Mechanoresponsive Polymerized Liquid Metal Networks

被引:209
作者
Thrasher, Carl [1 ]
Farrell, Zachary [1 ,2 ]
Morris, Nicholas [1 ,2 ]
Willey, Carson [1 ,2 ]
Tabor, Christopher [1 ]
机构
[1] Air Force Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA
[2] UES Inc, Dayton, OH 45432 USA
关键词
liquid metals; particle-polymer networks; stimuli-responsive; stretchable conductors; stretchable heaters; PRINTABLE ELASTIC CONDUCTORS; STRETCHABLE ELECTRONICS; HIGH-CONDUCTIVITY; STRAIN SENSORS; FIBERS; TRANSPARENT; NANOPARTICLES; COMPLEX; SKIN;
D O I
10.1002/adma.201903864
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Room-temperature liquid metals, such as nontoxic gallium alloys, show enormous promise to revolutionize stretchable electronics for next-generation soft robotic, e-skin, and wearable technologies. Core-shell particles of liquid metal with surface-bound acrylate ligands are synthesized and polymerized together to create cross-linked particle networks comprising >99.9% liquid metal by weight. When stretched, particles within these polymerized liquid metal networks (Poly-LMNs) rupture and release their liquid metal payload, resulting in a rapid 10(8)-fold increase in the network's conductivity. These networks autonomously form hierarchical structures that mitigate the deleterious effects of strain on electronic performance and give rise to emergent properties. Notable characteristics include nearly constant resistances over large strains, electronic strain memory, and increasing volumetric conductivity with strain to over 20 000 S cm(-1) at >700% elongation. Furthermore, these Poly-LMNs exhibit exceptional performance as stretchable heaters, retaining 96% of their areal power across relevant physiological strains. Remarkable electromechanical properties, responsive behaviors, and facile processing make Poly-LMNs ideal for stretchable power delivery, sensing, and circuitry.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Graphene kirigami [J].
Blees, Melina K. ;
Barnard, Arthur W. ;
Rose, Peter A. ;
Roberts, Samantha P. ;
McGill, Kathryn L. ;
Huang, Pinshane Y. ;
Ruyack, Alexander R. ;
Kevek, Joshua W. ;
Kobrin, Bryce ;
Muller, David A. ;
McEuen, Paul L. .
NATURE, 2015, 524 (7564) :204-+
[2]   Mechanically Sintered Gallium-Indium Nanoparticles [J].
Boley, John William ;
White, Edward L. ;
Kramer, Rebecca K. .
ADVANCED MATERIALS, 2015, 27 (14) :2355-2360
[3]   Interface-Controlled Conductive Fibers for Wearable Strain Sensors and Stretchable Conducting Wires [J].
Cao, Zherui ;
Wang, Ranran ;
He, Tengyu ;
Xu, Fangfang ;
Sun, Jing .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (16) :14087-14096
[4]   Transparent and Waterproof Ionic Liquid-Based Fibers for Highly Durable Multifunctional Sensors and Strain-Insensitive Stretchable Conductors [J].
Chen, Song ;
Liu, Haizhou ;
Liu, Shuqi ;
Wang, Pingping ;
Zeng, Songshan ;
Sun, Luyi ;
Liu, Lan .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (04) :4305-4314
[5]  
Chortos A, 2016, NAT MATER, V15, P937, DOI 10.1038/NMAT4671
[6]   Reconfigurable liquid metal circuits by Laplace pressure shaping [J].
Cumby, Brad L. ;
Hayes, Gerard J. ;
Dickey, Michael D. ;
Justice, Ryan S. ;
Tabor, Christopher E. ;
Heikenfeld, Jason C. .
APPLIED PHYSICS LETTERS, 2012, 101 (17)
[7]   Stretchable and Soft Electronics using Liquid Metals [J].
Dickey, Michael D. .
ADVANCED MATERIALS, 2017, 29 (27)
[8]   Route to Universally Tailorable Room-Temperature Liquid Metal Colloids via Phosphonic Acid Functionalization [J].
Farrell, Zachary J. ;
Reger, Nina ;
Anderson, Ian ;
Gawalt, Ellen ;
Tabor, Christopher .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (46) :26393-26400
[9]   Control of Gallium Oxide Growth on Liquid Metal Eutectic Gallium/Indium Nanoparticles via Thiolation [J].
Farrell, Zachary J. ;
Tabor, Christopher .
LANGMUIR, 2018, 34 (01) :234-240
[10]   Liquid-Phase Metal Inclusions for a Conductive Polymer Composite [J].
Fassler, Andrew ;
Majidi, Carmel .
ADVANCED MATERIALS, 2015, 27 (11) :1928-+