Multiple ecological pathways to extinction in mammals

被引:297
作者
Davidson, Ana D. [1 ,2 ]
Hamilton, Marcus J. [2 ,3 ]
Boyer, Alison G. [2 ,4 ]
Brown, James H. [2 ,5 ]
Ceballos, Gerardo [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ecol, Mexico City 04510, DF, Mexico
[2] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA
[3] Univ New Mexico, Dept Anthropol, Albuquerque, NM 87131 USA
[4] Univ Calif San Diego, Ecol Behav & Evolut Sect, Div Biol Sci, La Jolla, CA 92093 USA
[5] Santa Fe Inst, Santa Fe, NM 87501 USA
基金
美国国家科学基金会;
关键词
conservation; biodiversity; body size; IUCN Red List; decision tree; RISK; SIZE; CLASSIFICATION; PATTERNS; AVIFAUNA; HABITAT; DECLINE; LAND;
D O I
10.1073/pnas.0901956106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
As human population and resource demands continue to grow, biodiversity conservation has never been more critical. About one-quarter of all mammals are in danger of extinction, and more than half of all mammal populations are in decline. A major priority for conservation science is to understand the ecological traits that predict extinction risk and the interactions among those predictors that make certain species more vulnerable than others. Here, using a new database of nearly 4,500 mammal species, we use decision-tree models to quantify the multiple interacting factors associated with extinction risk. We show that the correlates of extinction risk vary widely across mammals and that there are unique pathways to extinction for species with different lifestyles and combinations of traits. We find that risk is relative and that all kinds of mammals, across all body sizes, can be at risk depending on their specific ecologies. Our results increase the understanding of extinction processes, generate simple rules of thumb that identify species at greatest risk, and highlight the potential of decision-tree analyses to inform conservation efforts.
引用
收藏
页码:10702 / 10705
页数:4
相关论文
共 33 条
[1]  
Bell JohnF., 1999, MACHINE LEARNING MET, P89
[2]   Extinction patterns in the avifauna of the Hawaiian islands [J].
Boyer, Alison G. .
DIVERSITY AND DISTRIBUTIONS, 2008, 14 (03) :509-517
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   Multiple causes of high extinction risk in large mammal species [J].
Cardillo, M ;
Mace, GM ;
Jones, KE ;
Bielby, J ;
Bininda-Emonds, ORP ;
Sechrest, W ;
Orme, CDL ;
Purvis, A .
SCIENCE, 2005, 309 (5738) :1239-1241
[5]   Latent extinction risk and the future battlegrounds of mammal conservation [J].
Cardillo, M ;
Mace, GM ;
Gittleman, JL ;
Purvis, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (11) :4157-4161
[6]   Biological determinants of extinction risk: why are smaller species less vulnerable? [J].
Cardillo, M .
ANIMAL CONSERVATION, 2003, 6 :63-69
[7]   The predictability of extinction: biological and external correlates of decline in mammals [J].
Cardillo, Marcel ;
Mace, Georgina M. ;
Gittleman, John L. ;
Jones, Kate E. ;
Bielby, Jon ;
Purvis, Andy .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2008, 275 (1641) :1441-1448
[8]   Global mammal conservation:: What must we manage? [J].
Ceballos, G ;
Ehrlich, PR ;
Soberón, J ;
Salazar, I ;
Fay, JP .
SCIENCE, 2005, 309 (5734) :603-607
[9]   Mammal population losses and the extinction crisis [J].
Ceballos, G ;
Ehrlich, PR .
SCIENCE, 2002, 296 (5569) :904-907
[10]   Random forests for classification in ecology [J].
Cutler, D. Richard ;
Edwards, Thomas C., Jr. ;
Beard, Karen H. ;
Cutler, Adele ;
Hess, Kyle T. .
ECOLOGY, 2007, 88 (11) :2783-2792