Five-Loop Running of the QCD Coupling Constant

被引:346
作者
Baikov, P. A. [1 ]
Chetyrkin, K. G. [2 ]
Kuehn, J. H. [2 ]
机构
[1] Lomonosov Moscow State Univ, Skobeltsyn Inst Nucl Phys, 1,2 Leninskie Gory, Moscow 119991, Russia
[2] Karlsruhe Inst Technol, Inst Theoret Teilchenphys, Karlsruhe, Germany
关键词
BETA-FUNCTION; BEHAVIOR;
D O I
10.1103/PhysRevLett.118.082002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analytically compute the five-loop term in the beta function which governs the running of as-the quark-gluon coupling constant in QCD. The new term leads to a reduction of the theory uncertainty in as taken at the Z-boson scale as extracted from the t-lepton decays as well as to new, improved by one more order of perturbation theory, predictions for the effective coupling constants of the standard model Higgs boson to gluons and for its total decay rate to the quark-antiquark pairs.
引用
收藏
页数:4
相关论文
共 44 条
[1]  
[Anonymous], ARXIVMATHPH0010025
[2]   Order αs4 QCD corrections to Z and τ decays [J].
Baikov, P. A. ;
Chetyrkin, K. G. ;
Kuehn, J. H. .
PHYSICAL REVIEW LETTERS, 2008, 101 (01)
[3]  
Baikov PA, 2014, J HIGH ENERGY PHYS, DOI 10.1007/JHEP10(2014)076
[4]   Four loop massless propagators: An algebraic evaluation of all master integrals [J].
Baikov, P. A. ;
Chetyrkin, K. G. .
NUCLEAR PHYSICS B, 2010, 837 (03) :186-220
[5]  
Baikov P. A., 2007, P SCI RADCOR2007, P022
[6]   Scalar correlator at O(αs4), Higgs boson decay into bottom quarks, and bounds on the light-quark masses -: art. no. 012003 [J].
Baikov, PA ;
Chetyrkin, KG ;
Kühn, JH .
PHYSICAL REVIEW LETTERS, 2006, 96 (01)
[7]   Explicit solutions of the 3-loop vacuum integral recurrence relations [J].
Baikov, PA .
PHYSICS LETTERS B, 1996, 385 (1-4) :404-410
[8]   A practical criterion of irreducibility of multi-loop Feynman integrals [J].
Baikov, PA .
PHYSICS LETTERS B, 2006, 634 (2-3) :325-329
[9]   CHARGE RENORMALIZATION GROUP IN QUANTUM FIELD THEORY [J].
BOGOLJUBOV, NN ;
SIRKOV, DV .
NUOVO CIMENTO, 1956, 3 (05) :845-863
[10]   Systematic scale-setting to all orders: The principle of maximum conformality and commensurate scale relations [J].
Brodsky, Stanley J. ;
Mojaza, Matin ;
Wu, Xing-Gang .
PHYSICAL REVIEW D, 2014, 89 (01)