A highly reversible anthraquinone-based anolyte for alkaline aqueous redox flow batteries

被引:73
作者
Cao, Jianyu [1 ]
Tao, Meng [1 ]
Chen, Hongping [1 ]
Xu, Juan [1 ]
Chen, Zhidong [1 ,2 ]
机构
[1] Changzhou Univ, Sch Petrochem Engn, Jiangsu Key Lab Adv Catalyt Mat & Technol, Changzhou 213164, Peoples R China
[2] Changzhou Univ, Sch Mat Sci & Engn, Jiangsu Collaborat Innovat Ctr Photovolta Sci & E, Jiangsu Key Lab Mat Surface Sci & Technol, Changzhou 213164, Peoples R China
基金
中国国家自然科学基金;
关键词
Renewable energy; Aqueous redox flow battery; Dihydroxyanthraquinone; Redox reversibility; Hydrotropic agent; PROTON-TRANSFER; NICOTINAMIDE; DERIVATIVES; SOLUBILITY; ELECTRODES; REDUCTION; DYNAMICS;
D O I
10.1016/j.jpowsour.2018.03.041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of electroactive organic materials for use in aqueous redox flow battery (RFB) electrolytes is highly attractive because of their structural flexibility, low cost and sustainability. Here, we report on a highly reversible anthraquinone-based anolyte (1,8-dihydroxyanthraquinone, 1,8-DHAQ) for alkaline aqueous RFB applications. Electrochemical measurements reveal the substituent position of hydroxyl groups for DHAQ isomers has a significant impact on the redox potential, electrochemical reversibility and water-solubility. 1,8-DHAQ shows the highest redox reversibility and rapidest mass diffusion among five isomeric DHAQs. The alkaline aqueous RFB using 1,8-DHAQ as the anolyte and potassium ferrocyanide as the catholyte yields open circuit voltage approaching 1.1 V and current efficiency and capacity retention exceeding 99.3% and 99.88% per cycle, respectively. This aqueous RFB produces a maximum power density of 152 mW cm(-2) at 100% SOC and 45 degrees C. Choline hydroxide was used as a hydrotropic agent to enhance the water-solubility of 1,8-DHAQ. 1,8-DHAQ has a maximum solubility of 3 M in 1 M KOH with 4 M choline hydroxide.
引用
收藏
页码:40 / 46
页数:7
相关论文
共 34 条
[11]   Effect of a mixture of caffeine and nicotinamide on the solubility of vitamin (B2) in aqueous solution [J].
Evstigneev, MP ;
Eustigneev, VP ;
Santiago, AAH ;
Davies, DB .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2006, 28 (1-2) :59-66
[12]   Ab initio study of the intramolecular proton transfer in dihydroxyanthraquinones [J].
Ferreiro, ML ;
Rodríguez-Otero, J .
JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2001, 542 :63-77
[13]   Differential capacity of a deep eutectic solvent based on choline chloride and glycerol on solid electrodes [J].
Figueiredo, Marta ;
Gomes, Cristiana ;
Costa, Renata ;
Martins, Ana ;
Pereira, Carlos M. ;
Silva, Fernando .
ELECTROCHIMICA ACTA, 2009, 54 (09) :2630-2634
[14]   A metal-free organic-inorganic aqueous flow battery [J].
Huskinson, Brian ;
Marshak, Michael P. ;
Suh, Changwon ;
Er, Sueleyman ;
Gerhardt, Michael R. ;
Galvin, Cooper J. ;
Chen, Xudong ;
Aspuru-Guzik, Alan ;
Gordon, Roy G. ;
Aziz, Michael J. .
NATURE, 2014, 505 (7482) :195-+
[15]   An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials [J].
Janoschka, Tobias ;
Martin, Norbert ;
Martin, Udo ;
Friebe, Christian ;
Morgenstern, Sabine ;
Hiller, Hannes ;
Hager, Martin D. ;
Schubert, Ulrich S. .
NATURE, 2015, 527 (7576) :78-81
[16]  
Kondo T, 1997, J POLYM SCI POL PHYS, V35, P717, DOI 10.1002/(SICI)1099-0488(199703)35:4<717::AID-POLB18>3.0.CO
[17]  
2-J
[18]  
Lin KX, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.102, 10.1038/NENERGY.2016.102]
[19]   Alkaline quinone flow battery [J].
Lin, Kaixiang ;
Chen, Qing ;
Gerhardt, Michael R. ;
Tong, Liuchuan ;
Kim, Sang Bok ;
Eisenach, Louise ;
Valle, Alvaro W. ;
Hardee, David ;
Gordon, Roy G. ;
Aziz, Michael J. ;
Marshak, Michael P. .
SCIENCE, 2015, 349 (6255) :1529-1532
[20]   A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte [J].
Liu, Tianbiao ;
Wei, Xiaoliang ;
Nie, Zimin ;
Sprenkle, Vincent ;
Wang, Wei .
ADVANCED ENERGY MATERIALS, 2016, 6 (03)