PRESERVERS FOR NORMS OF LIE PRODUCT

被引:20
作者
Li, Chi-Kwong [1 ]
Poon, Edward [2 ]
Sze, Nung-Sing [3 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[2] Embry Riddle Aeronaut Univ, Dept Math, Prescott, AZ 86301 USA
[3] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
来源
OPERATORS AND MATRICES | 2009年 / 3卷 / 02期
关键词
Lie product; unitarily invariant and unitary similarity invariant norms; MATRICES;
D O I
10.7153/oam-03-10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let parallel to . parallel to be a unitary similarity invariant norm on the set M-n of n x n complex matrices. A description is obtained for surjective maps phi on M-n satisfying parallel to AB - BA parallel to = parallel to phi(A)phi(B) - phi(B)phi(A)parallel to for all A, B is an element of M-n. The general theorem covers the special cases when the norm is one of the Schatten p-norms, the Ky-Fan k-norms, or the k-numerical radii.
引用
收藏
页码:187 / 203
页数:17
相关论文
共 7 条
[1]   Mappings on matrices: Invariance of functional values of matrix products [J].
Chan, Jor-Ting ;
Li, Chi-Kwong ;
Sze, Nung-Sing .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 81 :165-184
[2]   Isometries for unitarily invariant norms [J].
Chan, JT ;
Li, CK ;
Sze, NS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 399 :53-70
[3]   Multiplicative preservers on semigroups of matrices [J].
Cheung, WS ;
Fallat, S ;
Li, CK .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 355 (1-3) :173-186
[4]   MATRICES WITH PRESCRIBED OFF-DIAGONAL ELEMENTS [J].
FRIEDLAND, S .
ISRAEL JOURNAL OF MATHEMATICS, 1972, 11 (02) :184-+
[5]  
Guralnick R.M., 1997, Linear and Multilinear Algebra, V43, P257, DOI 10.1080/03081089708818528
[6]  
Horn R. A., 2012, Matrix Analysis
[7]  
Semrl P, 2005, ACTA SCI MATH, V71, P781