Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae

被引:28
|
作者
Qi, Xin [1 ,2 ]
Zha, Jian [1 ,2 ]
Liu, Gao-Gang [1 ,2 ]
Zhang, Weiwen [1 ,2 ]
Li, Bing-Zhi [1 ,2 ]
Yuan, Ying-Jin [1 ,2 ]
机构
[1] Tianjin Univ, Minist Educ, Key Lab Syst Bioengn, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, SynBio Res Platform, Tianjin 300072, Peoples R China
来源
FRONTIERS IN MICROBIOLOGY | 2015年 / 6卷
关键词
synthetic biology; xylose isomerase; XylA; xylose utilization; yeast; evolutionary engineering; PENTOSE-PHOSPHATE PATHWAY; INCREASES ETHANOL-PRODUCTION; FUNCTIONAL EXPRESSION; XYLULOKINASE ACTIVITY; ENHANCED EXPRESSION; ADAPTIVE EVOLUTION; ESCHERICHIA-COLI; METABOLIC FLUX; CORN STOVER; FERMENTATION;
D O I
10.3389/fmicb.2015.01165
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Xylose utilization is one key issue for the bioconversion of lignocelluloses. It is a promising approach to engineering heterologous pathway for xylose utilization in Saccharomyces cerevisiae. Here, we constructed a xylose-fermenting yeast SyBE001 through combinatorial fine-tuning the expression of XylA and endogenous XKS1. Additional overexpression of genes RK11, RPE1, TKL1, and TAL1 in the non-oxidative pentose phosphate pathway (PPP) in SyBE001 increased the xylose consumption rate by 1.19-fold. By repetitive adaptation, the xylose utilization rate was further increased by similar to 10-fold in the resultant strain SyBE003. Gene expression analysis identified a variety of genes with significantly changed expression in the PPP, glycolysis and the tricarboxylic acid cycle in SyBE003.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
    Zhou, Hang
    Cheng, Jing-sheng
    Wang, Benjamin L.
    Fink, Gerald R.
    Stephanopoulos, Gregory
    METABOLIC ENGINEERING, 2012, 14 (06) : 611 - 622
  • [2] Engineering Saccharomyces cerevisiae for xylose utilization
    Pronk, J
    Kuyper, M
    Toirkens, M
    Winkler, R
    van Dijken, H
    de Laat, W
    JOURNAL OF BIOTECHNOLOGY, 2005, 118 : S86 - S87
  • [3] Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields
    Lee, Sun-Mi
    Jellison, Taylor
    Alper, Hal S.
    BIOTECHNOLOGY FOR BIOFUELS, 2014, 7
  • [4] Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields
    Sun-Mi Lee
    Taylor Jellison
    Hal S Alper
    Biotechnology for Biofuels, 7
  • [5] Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose
    Sonderegger, M
    Sauer, U
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (04) : 1990 - 1998
  • [6] Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase
    Smith, Justin
    van Rensburg, Eugene
    Goergens, Johann F.
    BMC BIOTECHNOLOGY, 2014, 14
  • [7] ENGINEERING OF XYLOSE METABOLIC PATHWAY IN SACCHAROMYCES-CEREVISIAE
    HO, NWY
    DENG, SXX
    CHEN, JD
    FASEB JOURNAL, 1991, 5 (06): : A1510 - A1510
  • [8] New genotypes of industrial yeast Saccharomyces cerevisiae engineered with YXI and heterologous xylose transporters improve xylose utilization and ethanol production
    Moon, Jaewoong
    Liu, Z. Lewis
    Ma, Menggen
    Slininger, Patricia J.
    BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY, 2013, 2 (03) : 247 - 254
  • [9] Molecular evolutionary engineering of xylose isomerase to improve its catalytic activity and performance of micro-aerobic glucose/xylose co-fermentation in Saccharomyces cerevisiae
    Taisuke Seike
    Yosuke Kobayashi
    Takehiko Sahara
    Satoru Ohgiya
    Yoichi Kamagata
    Kazuhiro E. Fujimori
    Biotechnology for Biofuels, 12
  • [10] Identification of Mutations Responsible for Improved Xylose Utilization in an Adapted Xylose Isomerase Expressing Saccharomyces cerevisiae Strain
    Hector, Ronald E.
    Mertens, Jeffrey A.
    Nichols, Nancy N.
    FERMENTATION-BASEL, 2022, 8 (12):