A construction of quantum turbo product codes based on CSS-type quantum convolutional codes

被引:1
作者
Xiao, Hailin [1 ,2 ,3 ]
Ni, Ju [4 ]
Xie, Wu [5 ]
Ouyang, Shan [3 ]
机构
[1] Wenzhou Univ, Coll Phys & Elect Informat Engn, Wenzhou 325035, Peoples R China
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Jiangsu, Peoples R China
[3] Guangxi Key Lab Wireless Wideband Commun & Signal, Guilin 541004, Peoples R China
[4] Lib Guilin Univ Elect Technol, Guilin 541004, Peoples R China
[5] Univ Elect Technol, Sch Comp Sci & Engn, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
CSS-type stabilizer codes; quantum convolutional codes; quantum turbo product codes; quantum error-correcting codes; ERROR-CORRECTION; DECODING ALGORITHM; ENCODERS; DESIGN;
D O I
10.1142/S0219749917500034
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
As in classical coding theory, turbo product codes (TPCs) through serially concatenated block codes can achieve approximatively Shannon capacity limit and have low decoding complexity. However, special requirements in the quantum setting severely limit the structures of turbo product codes (QTPCs). To design a good structure for QTPCs, we present a new construction of QTPCs with the interleaved serial concatenation of CSS (L-1,L-2)-type quantum convolutional codes (QCCs). First, CSS (L-1,L-2)-type QCCs are proposed by exploiting the theory of CSS-type quantum stabilizer codes and QCCs, and the description and the analysis of encoder circuit are greatly simplified in the form of Hadamard gates and C-NOT gates. Second, the interleaved coded matrix of QTPCs is derived by quantum permutation SWAP gate definition. Finally, we prove the corresponding relation on the minimum Hamming distance of QTPCs associated with classical TPCs, and describe the state diagram of encoder and decoder of QTPCs that have a highly regular structure and simple design idea.
引用
收藏
页数:14
相关论文
共 38 条
  • [1] Relative performance of ancilla verification and decoding in the [[7,1,3]] Steane code
    Abu-Nada, Ali
    Fortescue, Ben
    Byrd, Mark
    [J]. PHYSICAL REVIEW A, 2014, 89 (06):
  • [2] An efficient chase decoder for turbo product codes
    Argon, C
    McLaughlin, SW
    [J]. IEEE TRANSACTIONS ON COMMUNICATIONS, 2004, 52 (06) : 896 - 898
  • [3] A parallel decoder for low latency decoding of turbo product codes
    Argon, C
    McLaughlin, SW
    [J]. IEEE COMMUNICATIONS LETTERS, 2002, 6 (02) : 70 - 72
  • [4] Approximate quantum error correction for generalized amplitude-damping errors
    Cafaro, Carlo
    van Loock, Peter
    [J]. PHYSICAL REVIEW A, 2014, 89 (02):
  • [5] Quantum stabilizer codes embedding qubits into qudits
    Cafaro, Carlo
    Maiolini, Federico
    Mancini, Stefano
    [J]. PHYSICAL REVIEW A, 2012, 86 (02):
  • [6] Good quantum error-correcting codes exist
    Calderbank, AR
    Shor, PW
    [J]. PHYSICAL REVIEW A, 1996, 54 (02): : 1098 - 1105
  • [7] Good quantum-convolutional error-correction codes and their decoding algorithm exist
    Chau, HF
    [J]. PHYSICAL REVIEW A, 1999, 60 (03): : 1966 - 1974
  • [8] Nonbinary Quantum Convolutional Codes Derived from Negacyclic Codes
    Chen, Jianzhang
    Li, Jianping
    Yang, Fan
    Huang, Yuanyuan
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (01) : 198 - 209
  • [9] A Construction of Quantum LDPC Codes From Cayley Graphs
    Couvreur, Alain
    Delfosse, Nicolas
    Zemor, Gilles
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (09) : 6087 - 6098
  • [10] Interleaver design for serially concatenated convolutional codes: Theory and application
    Daneshgaran, F
    Laddomada, M
    Mondin, M
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (06) : 1177 - 1188