Folding DNA into Twisted and Curved Nanoscale Shapes

被引:1040
作者
Dietz, Hendrik [1 ,2 ]
Douglas, Shawn M. [1 ,2 ,3 ]
Shih, William M. [1 ,2 ,3 ]
机构
[1] Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA
[2] Harvard Univ, Dept Biol Chem & Mol Pharmacol, Sch Med, Boston, MA 02115 USA
[3] Harvard Univ, Wyss Inst Biologically Inspired Engn, Cambridge, MA 02138 USA
关键词
DOUBLE-CROSSOVER MOLECULES; CONDUCTIVE NANOWIRES; NANOTUBES; NANOSTRUCTURES; OCTAHEDRON; DESIGN;
D O I
10.1126/science.1174251
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We demonstrate the ability to engineer complex shapes that twist and curve at the nanoscale from DNA. Through programmable self-assembly, strands of DNA are directed to form a custom-shaped bundle of tightly cross-linked double helices, arrayed in parallel to their helical axes. Targeted insertions and deletions of base pairs cause the DNA bundles to develop twist of either handedness or to curve. The degree of curvature could be quantitatively controlled, and a radius of curvature as tight as 6 nanometers was achieved. We also combined multiple curved elements to build several different types of intricate nanostructures, such as a wireframe beach ball or square-toothed gears.
引用
收藏
页码:725 / 730
页数:6
相关论文
共 50 条
[31]   Information and redundancy in the burial folding code of globular proteins within a wide range of shapes and sizes [J].
Ferreira, Diogo C. ;
van der Linden, Marx G. ;
de Oliveira, Leandro C. ;
Onuchic, Jose N. ;
Pereira de Araujo, Antonio F. .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2016, 84 (04) :515-531
[32]   On Scrutinizing the Classical Polanyi Adsorption Potential Theory for Vapour Uptake Occurring in the Mesopores of Curved Shapes [J].
Ponce, Mariana ;
Munguia, Laura ;
Esparza, Marcos ;
Kornhauser, Isaac ;
Rojas, Fernando .
ADSORPTION SCIENCE & TECHNOLOGY, 2011, 29 (06) :585-594
[33]   3D DNA Nanostructures: The Nanoscale Architect [J].
Fu, Daniel ;
Reif, John .
APPLIED SCIENCES-BASEL, 2021, 11 (06)
[34]   Microcompartments for Protection and Isolation of Nanoscale DNA Computing Elements [J].
Fahry-Wood, Aurora ;
Fetrow, Madalyn Elise ;
Oloyede, Ayomide ;
Yang, Kyung-Ae ;
Stojanovic, Milan N. ;
Stefanovic, Darko ;
Graves, Steven W. ;
Carroll, Nick J. ;
Lakin, Matthew R. .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (12) :11262-11269
[35]   DNA Framework-Programmed Nanoscale Enzyme Assemblies [J].
Cao, Nan ;
Guo, Ruiyan ;
Song, Ping ;
Wang, Shaopeng ;
Liu, Gang ;
Shi, Jiye ;
Wang, Lihua ;
Li, Min ;
Zuo, Xiaolei ;
Yang, Xiurong ;
Fan, Chunhai ;
Li, Mingqiang ;
Zhang, Yueyue .
NANO LETTERS, 2024, 24 (15) :4682-4690
[36]   DNA-based nanoscale walking devices and their applications [J].
Xing, Yikang ;
Liu, Bing ;
Chao, Jie ;
Wang, Lianhui .
RSC ADVANCES, 2017, 7 (75) :47425-47434
[37]   Realizing mechanical frustration at the nanoscale using DNA origami [J].
Madhvacharyula, Anirudh S. ;
Li, Ruixin ;
Swett, Alexander A. ;
Du, Yancheng ;
Seo, Seongmin ;
Simmel, Friedrich C. ;
Choi, Jong Hyun .
NATURE COMMUNICATIONS, 2025, 16 (01)
[38]   Dynamic DNA nanotechnology: toward functional nanoscale devices [J].
DeLuca, Marcello ;
Shi, Ze ;
Castro, Carlos E. ;
Arya, Gaurav .
NANOSCALE HORIZONS, 2020, 5 (02) :182-201
[39]   Revealing thermodynamics of DNA origami folding via affine transformations [J].
Majikes, Jacob M. ;
Patrone, Paul N. ;
Schiffels, Daniel ;
Zwolak, Michael ;
Kearsley, Anthony J. ;
Forry, Samuel P. ;
Liddle, J. Alexander .
NUCLEIC ACIDS RESEARCH, 2020, 48 (10) :5268-5280
[40]   Design of a folding DNA triangular prism for cell analysis and regulation [J].
Liu, Le ;
Zhang, Ruixue ;
Yao, Jingkang ;
Xu, Xiaowen .
CHEMICAL ENGINEERING JOURNAL, 2023, 474