Numerical simulation of bubble formation with a moving contact line using Local Front Reconstruction Method

被引:20
|
作者
Mirsandi, H. [1 ]
Rajkotwala, A. H. [1 ]
Baltussen, M. W. [1 ]
Peters, E. A. J. F. [1 ]
Kuipers, J. A. M. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Chem Engn & Chem, Multiphase Reactors Grp, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
Numerical simulation; Bubble formation; Moving contact line; Front-tracking; Local Front Reconstruction Method; INCOMPRESSIBLE 2-PHASE FLOWS; MULTI-FLUID FLOWS; LEVEL SET METHODS; SUBMERGED ORIFICE; INVISCID LIQUID; SURFACE-TENSION; INTERFACE TRACKING; WETTING CONDITIONS; VOLUME; DETACHMENT;
D O I
10.1016/j.ces.2018.04.048
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The process of adiabatic bubble formation from an orifice plate occurs in various industrial applications. It is important to understand the dynamics of bubble formation and to develop numerical models to accurately predict the formation dynamics under various operating conditions. For the numerical models, an appropriate contact line boundary condition is necessary since this process may involve a moving contact line, which significantly affects the bubble departure size. In this paper, we extend the Local Front Reconstruction Method by incorporating contact angle dynamics. The predictions of the improved model are extensively verified and validated with experimental and numerical data available in the literature. The problem of three-dimensional bubble injection from an orifice into quiescent water using various volumetric flow rates is used to assess the numerical model under capillary dominant conditions and conditions where the interplay between inertial, viscous, surface tension, and buoyancy forces cause a complex interface deformation. (C) 2018 The Author(s). Published by Elsevier Ltd.
引用
收藏
页码:415 / 431
页数:17
相关论文
共 50 条
  • [1] Numerical simulation of bubble formation on orifice plates with a moving contact line
    Chen, Yuming
    Mertz, Rainer
    Kulenovic, Rudi
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2009, 35 (01) : 66 - 77
  • [2] Numerical simulation of jet break-up using the local front reconstruction method
    Llamas, Cristina Garcia
    Swami, Vivekanand V.
    Jennekens, Koen K. A.
    Buist, Kay A.
    Kuipers, J. A. M.
    Baltussen, Maike W.
    AICHE JOURNAL, 2024, 70 (04)
  • [3] Numerical simulation of moving contact line problems using a volume-of-fluid method
    Renardy, M
    Renardy, Y
    Li, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 171 (01) : 243 - 263
  • [4] A numerical study of flow boiling in a microchannel using the local front reconstruction method
    Rajkotwala, Adnan H.
    Boer, Leander L.
    Peters, E. A. J. F.
    van der Geld, Cees W. M.
    Kuerten, J. G. M.
    Kuipers, J. A. M.
    Baltussen, Maike W.
    AICHE JOURNAL, 2022, 68 (04)
  • [5] Numerical simulation of flows with moving contact line on complex substrates
    Liu, Haoran
    Ding, Hang
    PROCEEDINGS OF THE SECOND CONFERENCE OF GLOBAL CHINESE SCHOLARS ON HYDRODYNAMICS (CCSH'2016), VOLS 1 & 2, 2016, : 395 - 398
  • [6] Numerical simulation on single Taylor bubble rising in LBE using moving particle method
    Li, Xin
    Tian, Wenxi
    Chen, Ronghua
    Su, Guanghui
    Qiu, Suizheng
    NUCLEAR ENGINEERING AND DESIGN, 2013, 256 : 227 - 234
  • [7] Numerical simulation on single Taylor bubble rising in LBE using moving particle method
    Li, Xin
    Tian, Wen X.
    Chen, Rong H.
    Su, Guang H.
    Qiu, Sui Z.
    7TH INTERNATIONAL SYMPOSIUM ON MULTIPHASE FLOW, HEAT MASS TRANSFER AND ENERGY CONVERSION, 2013, 1547 : 700 - 710
  • [8] Numerical simulation on void bubble dynamics using moving particle semi-implicit method
    Tian, Wenxi
    Ishiwatari, Yuki
    Ikejiri, Satoshi
    Yamakawa, Masanori
    Oka, Yoshiaki
    NUCLEAR ENGINEERING AND DESIGN, 2009, 239 (11) : 2382 - 2390
  • [9] Numerical Simulation for Moving Contact Line with Continuous Finite Element Schemes
    Jiang, Yongyue
    Lin, Ping
    Guo, Zhenlin
    Dong, Shuangling
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 18 (01) : 180 - 202
  • [10] Numerical simulation of bubble formation in a microchannel using a micropillar
    Amaya L.
    Multiphase Science and Technology, 2019, 31 (03) : 255 - 272