The space of asymptotically conical self-expanders of mean curvature flow

被引:19
作者
Bernstein, Jacob [1 ]
Wang, Lu [2 ]
机构
[1] Johns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USA
[2] CALTECH, Dept Math, 1200 E Calif Blvd, Pasadena, CA 91106 USA
关键词
SURFACES;
D O I
10.1007/s00208-021-02147-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the space of asymptotically conical self-expanders of the mean curvature flow is a smooth Banach manifold. An immediate consequence is that non-degenerate self-expanders-that is, those self-expanders that admit no non-trivial normal Jacobi fields that fix the asymptotic cone-are generic in a certain sense.
引用
收藏
页码:175 / 230
页数:56
相关论文
共 27 条
[1]   Renormalized Area and Properly Embedded Minimal Surfaces in Hyperbolic 3-Manifolds [J].
Alexakis, Spyridon ;
Mazzeo, Rafe .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 297 (03) :621-651
[2]   A COMPUTED EXAMPLE OF NONUNIQUENESS OF MEAN-CURVATURE FLOW IN R(3) [J].
ANGENENT, S ;
ILMANEN, T ;
CHOPP, DL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (11-12) :1937-1958
[3]  
Bernstein, ARXIV180409076
[4]  
Bernstein, ARXIV170807085
[5]   THE INDEX THEOREM FOR CLASSICAL MINIMAL-SURFACES [J].
BOHME, R ;
TROMBA, AJ .
ANNALS OF MATHEMATICS, 1981, 113 (03) :447-499
[6]   Stability of mean convex cones under mean curvature flow [J].
Clutterbuck, J. ;
Schnuerer, O. C. .
MATHEMATISCHE ZEITSCHRIFT, 2011, 267 (3-4) :535-547
[7]   Generic mean curvature flow I; generic singularities [J].
Colding, Tobias H. ;
Minicozzi, William P., II .
ANNALS OF MATHEMATICS, 2012, 175 (02) :755-833
[8]   Smoothing out positively curved metric cones by Ricci expanders [J].
Deruelle, Alix .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (01) :188-249
[9]  
Ding, ARXIV150302612
[10]   INTERIOR ESTIMATES FOR HYPERSURFACES MOVING BY MEAN-CURVATURE [J].
ECKER, K ;
HUISKEN, G .
INVENTIONES MATHEMATICAE, 1991, 105 (03) :547-569