Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: validation for coastal and inland waters

被引:162
作者
De Keukelaere, L. [1 ]
Sterckx, S. [1 ]
Adriaensen, S. [1 ]
Knaeps, E. [1 ]
Reusen, I [1 ]
Giardino, C. [2 ]
Bresciani, M. [2 ]
Hunter, P. [3 ]
Neil, C. [3 ]
Van der Zande, D. [4 ]
Vaiciute, D. [5 ]
机构
[1] VITO, Remote Sensing Grp, Boeretang 200, B-2400 Mol, Belgium
[2] CNR, IREA, Opt Remote Sensing Grp, Milan, Italy
[3] Univ Stirling, Sch Nat Sci, Biol & Environm Sci, Stirling, Scotland
[4] RBINS, Operat Directorate Nat Environm, Brussels, Belgium
[5] Univ Klaipeda, Marine Sci & Technol Ctr, Coastal Res & Planning Inst, Klaipeda, Lithuania
基金
欧洲研究理事会;
关键词
Icor; atmospheric correction; adjacency effects; SIMEC; Landsat-8; OLI; Sentinel-2; MSI; AEROSOL OPTICAL DEPTH; SPATIAL-RESOLUTION; REFLECTANCE; LAND; RETRIEVAL; SPECTRUM; MATTER;
D O I
10.1080/22797254.2018.1457937
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Image correction for atmospheric effects (iCOR) is an atmospheric correction tool that can process satellite data collected over coastal, inland or transitional waters and land. The tool is adaptable with minimal effort to hyper- or multi-spectral radiometric sensors. By using a single atmospheric correction implementation for land and water, discontinuities in reflectance within one scene are reduced. iCOR derives aerosol optical thickness from the image and allows for adjacency correction, which is SIMilarity Environmental Correction (SIMEC) over water. This paper illustrates the performance of iCOR for Landsat-8 OLI and Sentinel-2 MSI data acquired over water. An intercomparison of water leaving reflectance between iCOR and Aerosol Robotic Network - Ocean Color provided a quantitative assessment of performance and produced coefficient of determination (R-2) higher than 0.88 in all wavebands except the 865 nm band. For inland waters, the SIMEC adjacency correction improved results in the rededge and near-infrared region in relation to optical in situ measurements collected during field campaigns.
引用
收藏
页码:525 / 542
页数:18
相关论文
共 60 条
[1]   MODTRAN™ 5:: 2006 update [J].
Berk, Alexander ;
Anderson, Gail P. ;
Acharya, Prabhat K. ;
Bernstein, Lawrence S. ;
Muratov, Leon ;
Lee, Jamine ;
Fox, Marsha ;
Adler-Golden, Steve M. ;
Chetwynd, James H. ;
Hoke, Michael L. ;
Lockwood, Ronald B. ;
Gardner, James A. ;
Cooley, Thomas W. ;
Borel, Christoph C. ;
Lewis, Paul E. ;
Shettle, Eric P. .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XII PTS 1 AND 2, 2006, 6233
[2]  
Biesemans J., 2007, 5 EARSEL SIG IM SPEC
[3]   Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality [J].
Brando, VE ;
Dekker, AG .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (06) :1378-1387
[4]  
Carr S. B., 2005, DSTOTR1803 AUSTR GOV, V1, P1
[5]  
Conel J. E., 1987, P 3 AIRB IM SPECTR D, V87, P18
[6]  
COX C, 1954, J MAR RES, V13, P198
[7]   Spectral variations in the near-infrared ocean reflectance [J].
Doron, Maeva ;
Belanger, Simon ;
Doxaran, David ;
Babin, Marcel .
REMOTE SENSING OF ENVIRONMENT, 2011, 115 (07) :1617-1631
[8]   Atmospheric Correction Inter-Comparison Exercise [J].
Doxani, Georgia ;
Vermote, Eric ;
Roger, Jean-Claude ;
Gascon, Ferran ;
Adriaensen, Stefan ;
Frantz, David ;
Hagolle, Olivier ;
Hollstein, Andre ;
Kirches, Grit ;
Li, Fuqin ;
Louis, Jerome ;
Mangin, Antoine ;
Pahlevan, Nima ;
Pflug, Bringfried ;
Vanhellemont, Quinten .
REMOTE SENSING, 2018, 10 (02)
[9]  
ESA, 2017, SENT 2 DOC LIB SENT
[10]   Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean [J].
Gao, Bo-Cai ;
Montes, Marcos J. ;
Davis, Curtiss O. ;
Goetz, Alexander F. H. .
REMOTE SENSING OF ENVIRONMENT, 2009, 113 :S17-S24