Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria

被引:56
|
作者
Moreira, Helena [1 ]
Marques, Ana P. G. C. [1 ]
Franco, Albina R. [1 ]
Rangel, Antonio O. S. S. [1 ]
Castro, Paula M. L. [1 ]
机构
[1] Univ Catolica Portuguesa Porto, CBQF, Lab Associado, Escola Super Biotecnol, P-4200072 Porto, Portugal
关键词
Zea mays; Soil; PGPR; Phytomanagement; Cadmium; Biomass production; Remediation; MICROBIAL COMMUNITY STRUCTURE; CADMIUM UPTAKE; HEAVY-METAL; HELIANTHUS-ANNUUS; POLLUTED SOILS; ACCUMULATION; PHYTOREMEDIATION; RESPONSES; BACTERIA; PB;
D O I
10.1007/s11356-014-2848-1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Zea mays (L.) is a crop widely cultivated throughout the world and can be considered suitable for phytomanagement due to its metal resistance and energetic value. In this study, the effect of two plant growth-promoting rhizobacteria, Ralstonia eutropha and Chryseobacterium humi, on growth and metal uptake of Z. mays plants in soils contaminated with up to 30 mg Cd kg(-1) was evaluated. Bacterial inoculation increased plant biomass up to 63 % and led to a decrease of up to 81 % in Cd shoot levels (4-88 mg Cd kg(-1)) and to an increase of up to 186 % in accumulation in the roots (52-134 mg Cd kg(-1)). The rhizosphere community structure changed throughout the experiment and varied with different levels of Cd soil contamination, as revealed by molecular biology techniques. Z. mays plants inoculated with either of the tested strains may have potential application in a strategy of soil remediation, in particular short-term phytostabilization, coupled with biomass production for energy purposes.
引用
收藏
页码:9742 / 9753
页数:12
相关论文
共 50 条
  • [1] Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria
    Helena Moreira
    Ana P. G. C. Marques
    Albina R. Franco
    António O. S. S. Rangel
    Paula M. L. Castro
    Environmental Science and Pollution Research, 2014, 21 : 9742 - 9753
  • [2] Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review
    Rizwan, Muhammad
    Ali, Shafaqat
    Qayyum, Muhammad Farooq
    Ok, Yong Sik
    Zia-ur-Rehman, Muhammad
    Abbas, Zaheer
    Hannan, Fakhir
    ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 2017, 39 (02) : 259 - 277
  • [3] Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review
    Muhammad Rizwan
    Shafaqat Ali
    Muhammad Farooq Qayyum
    Yong Sik Ok
    Muhammad Zia-ur-Rehman
    Zaheer Abbas
    Fakhir Hannan
    Environmental Geochemistry and Health, 2017, 39 : 259 - 277
  • [4] Enhanced dandelion phytoremediation of Cd-contaminated soil assisted by tea saponin and plant growth-promoting rhizobacteria
    Yu, Jie
    Xie, Ruolan
    Yu, Jiang
    He, Huan
    Deng, Siwei
    Ding, Senxu
    Sun, Xiaoshuang
    Hllah, Hameed
    JOURNAL OF SOILS AND SEDIMENTS, 2023, 23 (04) : 1745 - 1759
  • [5] Enhanced dandelion phytoremediation of Cd-contaminated soil assisted by tea saponin and plant growth-promoting rhizobacteria
    Jie Yu
    Ruolan Xie
    Jiang Yu
    Huan He
    Siwei Deng
    Senxu Ding
    Xiaoshuang Sun
    Hameed Hllah
    Journal of Soils and Sediments, 2023, 23 : 1745 - 1759
  • [6] The Integrated Amendment of Sodic-Saline Soils Using Biochar and Plant Growth-Promoting Rhizobacteria Enhances Maize (Zea mays L.) Resilience to Water Salinity
    Nehela, Yasser
    Mazrou, Yasser S. A.
    Alshaal, Tarek
    Rady, Asmaa M. S.
    El-Sherif, Ahmed M. A.
    Omara, Alaa El-Dein
    Abd El-Monem, Ahmed M.
    Hafez, Emad M.
    PLANTS-BASEL, 2021, 10 (09):
  • [7] Plant growth-promoting rhizobacteria enhance the growth and Cd uptake of Sedum plumbizincicola in a Cd-contaminated soil
    Wuxing Liu
    Qingling Wang
    Beibei Wang
    Jinyu Hou
    Yongming Luo
    Caixian Tang
    Ashley E. Franks
    Journal of Soils and Sediments, 2015, 15 : 1191 - 1199
  • [8] Plant growth-promoting rhizobacteria enhance the growth and Cd uptake of Sedum plumbizincicola in a Cd-contaminated soil
    Liu, Wuxing
    Wang, Qingling
    Wang, Beibei
    Hou, Jinyu
    Luo, Yongming
    Tang, Caixian
    Franks, Ashley E.
    JOURNAL OF SOILS AND SEDIMENTS, 2015, 15 (05) : 1191 - 1199
  • [9] Rhizobacteria of Bali With Obvious Growth-Promoting Properties on Corn (Zea mays L.)
    Maulina, Ni Made Intan
    Suprapta, Dewa Ngurah
    Temaja, I. Gede Rai Maya
    Adnyana, I. Made
    Suriani, Ni Luh
    FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2022, 6
  • [10] Mitigation of drought stress in Zea mays L. through plant growth-promoting rhizobacteria assisted by foliar sorghum water extract
    Ullah, Raza
    Siddiqui, Ayesha
    Rehman, Shoaib Ur
    Kamran, Muhammad
    Abbas, Hafiz Tassawar
    Khalid, Muhammad Awais
    Afzal, Muhammad Rahil
    Jabbar, Esha
    Sohail, Muhammad Irfan
    ACTA PHYSIOLOGIAE PLANTARUM, 2024, 46 (06)