Multiplicity of solutions for critical singular problems

被引:9
作者
Assuncao, Ronaldo B.
Carriao, Paulo Cesar
Miyagaki, Olimpio Hiroshi [1 ]
机构
[1] Univ Fed Vicosa, Dept Matemat, BR-36571000 Vicosa, MG, Brazil
[2] Univ Fed Minas Gerais, Dept Matemat, BR-31270010 Belo Horizonte, MG, Brazil
关键词
degenerate quasilinear equation; p-Laplacian; compactness-concentration; variational methods;
D O I
10.1016/j.aml.2005.10.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we deal with the class of critical singular quasilinear elliptic problems in R-N of the form -div(\x\(-ap)\del u\(p-2)del u) = alpha\x\(-bq)\u\(q-2)u+beta\x\(-dr) k\u (r-2)u x is an element of R-N. (P) where -1< p < N, a < N/p, a <= b < a + 1, alpha and beta are positive parameters, q = q(a, b) =_ Np/[N - p(a + 1 - b)] and d is an element of R. Moreover, 1 < r < p* = Np/(N - p) and 0 <= k is an element of L-r(d-b)(q/(q-r)) (R-N). Multiplicity results are established by combining a version of the concentration-compactness lemma due to Lions with the Krasnoselski genus and the symmetric mountain-pass theorem due to Rabinowitz. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:741 / 746
页数:6
相关论文
共 20 条
[1]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[2]  
ASSUNCAO RB, UNPUB SINGULAR MINIM
[3]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[4]   ON AN ELLIPTIC EQUATION WITH CONCAVE AND CONVEX NONLINEARITIES [J].
BARTSCH, T ;
WILLEM, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (11) :3555-3561
[5]   Extrema problems with critical Sobolev exponents on unbounded domains [J].
BenNaoum, AK ;
Troestler, C ;
Willem, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (04) :823-833
[6]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[7]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[8]   ON A VARIATIONAL PROBLEM PROPOSED BY BREZIS,H. [J].
CAO, DM ;
LI, GB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (09) :1145-1156
[9]  
Carriao PC., 2000, APPL ANAL, V74, P275
[10]   On multiple solutions of a singular quasilinear equation on unbounded domain [J].
Chen, JQ ;
Li, SJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (02) :733-746