Influence of radiation damage on xenon diffusion in silicon carbide

被引:16
作者
Friedland, E. [1 ]
Gaertner, K. [2 ]
Hlatshwayo, T. T. [1 ]
van der Berg, N. G. [1 ]
Thabethe, T. T. [1 ]
机构
[1] Univ Pretoria, Dept Phys, Pretoria, South Africa
[2] Univ Jena, Inst Festkorperphys, D-07743 Jena, Germany
基金
新加坡国家研究基金会;
关键词
Silicon carbide; Diffusion; Radiation damage; DISLOCATION LOOPS; IODINE DIFFUSION;
D O I
10.1016/j.nimb.2014.02.109
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Diffusion of xenon in poly and single crystalline silicon carbide and the possible influence of radiation damage on it are investigated. For this purpose 360 keV xenon ions were implanted in commercial 6H-SiC and CVD-SiC wafers at room temperature, 350 degrees C and 600 degrees C. Width broadening of the implantation profiles and xenon retention during isochronal and isothermal annealing up to temperatures of 1500 degrees C was determined by RBS-analysis, whilst in the case of 6H-SiC damage profiles were simultaneously obtained by alpha-particle channelling. No diffusion or xenon loss was detected in the initially amorphized and eventually recrystallized surface layer of cold implanted 6H-SiC during annealing up to 1200 degrees C. Above that temperature serious erosion of the implanted surface occurred, which made any analysis impossible. No diffusion or xenon loss is detected in the hot implanted 6H-SiC samples during annealing up to 1400 degrees C. Radiation damage dependent grain boundary diffusion is observed at 1300 degrees C in CVD-SiC. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:415 / 420
页数:6
相关论文
共 50 条
[31]   Low temperature hydrogen diffusion in silicon: Influence of substrate quality and the surface damage [J].
Symko, MI ;
Sopori, BL ;
Reedy, R ;
Jones, KM .
DEFECTS IN SEMICONDUCTORS - ICDS-19, PTS 1-3, 1997, 258-2 :191-196
[32]   Development of a Radiation Detector Based on Silicon Carbide [J].
Ishikawa, I. ;
Kada, W. ;
Sato, F. ;
Kato, Y. ;
Tanaka, T. ;
Iida, T. .
JOURNAL OF NUCLEAR SCIENCE AND TECHNOLOGY, 2008, :489-491
[33]   Synthesis of silicon carbide by exposure to solar radiation [J].
Gulamova D.D. ;
Uskenbaev D.E. ;
Turdiev Zh.Sh. ;
Toshmurodov Yo.K. ;
Bobokulov S.H. .
Applied Solar Energy, 2009, 45 (2) :105-108
[34]   Processing, damage tolerance and crack healing in the silicon carbide fabric-covered silicon carbide composite [J].
Arima, Takashi ;
Hirata, Yoshihiro ;
Matsunaga, Naoki ;
Sameshima, Soichiro ;
Shibuya, Masaki .
JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2008, 116 (1352) :519-524
[35]   COMPARISON OF DIFFUSION COEFFICIENTS AND ACTIVATION ENERGIES FOR AG DIFFUSION IN SILICON CARBIDE [J].
Kim, Bong Goo ;
Yeo, Sunghwan ;
Lee, Young Woo ;
Cho, Moon Sung .
NUCLEAR ENGINEERING AND TECHNOLOGY, 2015, 47 (05) :608-616
[36]   The Diffusion Stage of Silicon Carbide Growth at the Pyrocarbon–Liquid Silicon Interface [J].
I. L. Sinani ;
V. M. Bushuev ;
S. G. Lunegov .
Protection of Metals and Physical Chemistry of Surfaces, 2018, 54 :1312-1314
[37]   Damage-free machining of monocrystalline silicon carbide [J].
Tanaka, Hiroaki ;
Shimada, Shoichi .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2013, 62 (01) :55-58
[38]   Oxide film assisted dopant diffusion in silicon carbide [J].
Tin, Chin-Che ;
Mendis, Suwan ;
Chew, Kerlit ;
Atabaev, Ilkham ;
Saliev, Tojiddin ;
Bakhranov, Erkin ;
Atabaev, Bakhtiyar ;
Adedeji, Victor ;
Rusli .
THIN SOLID FILMS, 2010, 518 (24) :E118-E120
[39]   Silicon Carbide Diffusion Bonding by Spark Plasma Sintering [J].
Aroshas, Ron ;
Rosenthal, Idan ;
Stern, Adin ;
Shmul, Zvia ;
Kalabukhov, Sergei ;
Frage, Nachum .
MATERIALS AND MANUFACTURING PROCESSES, 2015, 30 (01) :122-126
[40]   Real-time visualization of impact damage in monolithic silicon carbide and fibrous silicon carbide ceramic composite [J].
Kedir, Nesredin ;
Kirk, Cody D. ;
Guo Zherui ;
Kerschen, Nicholas E. ;
Sun Tao ;
Fezzaa, Kamel ;
Chen Weinong .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2019, 129 :168-179