Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties

被引:65
作者
Capasso, Andrea [1 ,2 ]
Dikonimos, Theodoros [1 ]
Sarto, Francesca [3 ]
Tamburrano, Alessio [4 ]
De Bellis, Giovanni [4 ]
Sarto, Maria Sabrina [4 ]
Faggio, Giuliana [5 ]
Malara, Angela [5 ]
Messina, Giacomo [5 ]
Lisi, Nicola [1 ]
机构
[1] ENEA, Casaccia Res Ctr, Mat Technol Unit, Surface Technol Lab, I-00123 Rome, Italy
[2] Ist Italiano Tecnol, Graphene Labs, I-16163 Genoa, Italy
[3] ENEA, Fus Tech Unit, Lab Nucl Technol, I-00044 Rome, Italy
[4] Univ Roma La Sapienza, SSNLab, Res Ctr Nanotechnol Appl Engn Sapienza CNIS, I-00185 Rome, Italy
[5] Univ Mediterranea Reggio Calabria, Dipartimento Ingn Informaz Infrastrutture & Energ, I-89122 Reggio Di Calabria, Italy
关键词
carbon; electrical conductivity; nitrogen doping; optical conductivity; transparent conductor; OXIDE ELECTRODES; CARBON NANOTUBES; LARGE-AREA; TIN OXIDE; GROWTH; SCATTERING; CRYSTALS; ROADMAP; COPPER;
D O I
10.3762/bjnano.6.206
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene films were produced by chemical vapor deposition (CVD) of pyridine on copper substrates. Pyridine-CVD is expected to lead to doped graphene by the insertion of nitrogen atoms in the growing sp(2) carbon lattice, possibly improving the properties of graphene as a transparent conductive film. We here report on the influence that the CVD parameters (i.e., temperature and gas flow) have on the morphology, transmittance, and electrical conductivity of the graphene films grown with pyridine. A temperature range between 930 and 1070 degrees C was explored and the results were compared to those of pristine graphene grown by ethanol-CVD under the same process conditions. The films were characterized by atomic force microscopy, Raman and X-ray photoemission spectroscopy. The optical transmittance and electrical conductivity of the films were measured to evaluate their performance as transparent conductive electrodes. Graphene films grown by pyridine reached an electrical conductivity of 14.3 x 10(5) S/m. Such a high conductivity seems to be associated with the electronic doping induced by substitutional nitrogen atoms. In particular, at 930 degrees C the nitrogen/carbon ratio of pyridine-grown graphene reaches 3%, and its electrical conductivity is 40% higher than that of pristine graphene grown from ethanol-CVD.
引用
收藏
页码:2028 / 2038
页数:11
相关论文
共 57 条
[1]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[2]   Cyclododecane as support material for clean and facile transfer of large-area few-layer graphene [J].
Capasso, A. ;
De Francesco, M. ;
Leoni, E. ;
Dikonimos, T. ;
Buonocore, F. ;
Lancellotti, L. ;
Bobeico, E. ;
Sarto, M. S. ;
Tamburrano, A. ;
De Bellis, G. ;
Lisi, N. .
APPLIED PHYSICS LETTERS, 2014, 105 (11)
[3]   Multi-wall carbon nanotube coating of fluorine-doped tin oxide as an electrode surface modifier for polymer solar cells [J].
Capasso, A. ;
Salamandra, L. ;
Chou, A. ;
Di Carlo, A. ;
Motta, N. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 122 :297-302
[4]   Low-temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells [J].
Capasso, Andrea ;
Salamandra, Luigi ;
Di Carlo, Aldo ;
Bell, John M. ;
Motta, Nunzio .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2012, 3 :524-532
[5]   Raman fingerprint of charged impurities in graphene [J].
Casiraghi, C. ;
Pisana, S. ;
Novoselov, K. S. ;
Geim, A. K. ;
Ferrari, A. C. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[6]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[7]   Surface transfer p-type doping of epitaxial graphene [J].
Chen, Wei ;
Chen, Shi ;
Qi, Dong Chen ;
Gao, Xing Yu ;
Wee, Andrew Thye Shen .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (34) :10418-10422
[8]   XPS evidence for molecular charge-transfer doping of graphene [J].
Choudhury, Debraj ;
Das, Barun ;
Sarma, D. D. ;
Rao, C. N. R. .
CHEMICAL PHYSICS LETTERS, 2010, 497 (1-3) :66-69
[9]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[10]   Are There Fundamental Limitations on the Sheet Resistance and Transmittance of Thin Graphene Films? [J].
De, Sukanta ;
Coleman, Jonathan N. .
ACS NANO, 2010, 4 (05) :2713-2720