Computation of mean and variance of the radiotherapy dose for PCA-modeled random shape and position variations of the target

被引:6
作者
Budiarto, E. [1 ]
Keijzer, M. [1 ]
Storchi, P. R. M. [2 ]
Heemink, A. W. [1 ]
Breedveld, S. [2 ]
Heijmen, B. J. M. [2 ]
机构
[1] Delft Univ Technol, DIAM, NL-2628 CD Delft, Netherlands
[2] Erasmus MC Daniel den Hoed Canc Ctr, Dept Radiat Oncol, NL-3075 EA Rotterdam, Netherlands
关键词
PLAN OPTIMIZATION; ORGAN MOVEMENTS; PHOTON BEAMS; UNCERTAINTIES; IMRT; IMPLEMENTATION; MOTION;
D O I
10.1088/0031-9155/59/2/289
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Radiotherapy dose delivery in the tumor and surrounding healthy tissues is affected by movements and deformations of the corresponding organs between fractions. The random variations may be characterized by non-rigid, anisotropic principal component analysis (PCA) modes. In this article new dynamic dose deposition matrices, based on established PCA modes, are introduced as a tool to evaluate the mean and the variance of the dose at each target point resulting from any given set of fluence profiles. The method is tested for a simple cubic geometry and for a prostate case. The movements spread out the distributions of the mean dose and cause the variance of the dose to be highest near the edges of the beams. The non-rigidity and anisotropy of the movements are reflected in both quantities. The dynamic dose deposition matrices facilitate the inclusion of the mean and the variance of the dose in the existing fluence-profile optimizer for radiotherapy planning, to ensure robust plans with respect to the movements.
引用
收藏
页码:289 / 310
页数:22
相关论文
共 19 条
[1]   A PENCIL BEAM MODEL FOR PHOTON DOSE CALCULATION [J].
AHNESJO, A ;
SAXNER, M ;
TREPP, A .
MEDICAL PHYSICS, 1992, 19 (02) :263-273
[2]   Dose calculations for external photon beams in radiotherapy [J].
Ahnesjö, A ;
Aspradakis, MM .
PHYSICS IN MEDICINE AND BIOLOGY, 1999, 44 (11) :R99-R155
[3]  
[Anonymous], 1980, Multivariate Analysis
[4]   Adapting inverse planning to patient and organ geometrical variation:: algorithm and implementation [J].
Birkner, M ;
Yan, D ;
Alber, M ;
Liang, J ;
Nüsslin, F .
MEDICAL PHYSICS, 2003, 30 (10) :2822-2831
[5]   Fast, multiple optimizations of quadratic dose objective functions in IMRT [J].
Breedveld, Sebastiaan ;
Storchi, Pascal R. M. ;
Keijzer, Marleen ;
Heijmen, Ben J. M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (14) :3569-3579
[6]   iCycle: Integrated, multicriterial beam angle, and profile optimization for generation of coplanar and noncoplanar IMRT plans [J].
Breedveld, Sebastiaan ;
Storchi, Pascal R. M. ;
Voet, Peter W. J. ;
Heijmen, Ben J. M. .
MEDICAL PHYSICS, 2012, 39 (02) :951-963
[7]   The equivalence of multi-criteria methods for radiotherapy plan optimization [J].
Breedveld, Sebastiaan ;
Storchi, Pascal R. M. ;
Heijmen, Ben J. M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (23) :7199-7209
[8]   A population-based model to describe geometrical uncertainties in radiotherapy: applied to prostate cases [J].
Budiarto, E. ;
Keijzer, M. ;
Storchi, P. R. ;
Hoogeman, M. S. ;
Bondar, L. ;
Mutanga, T. F. ;
de Boer, H. C. J. ;
Heemink, A. W. .
PHYSICS IN MEDICINE AND BIOLOGY, 2011, 56 (04) :1045-1061
[9]   A method of incorporating organ motion uncertainties into three-dimensional conformal treatment plans [J].
Mageras, GS ;
Kutcher, GJ ;
Leibel, SA ;
Zelefsky, MJ ;
Melian, E ;
Mohan, R ;
Fuks, Z .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1996, 35 (02) :333-342
[10]   Inverse plan optimization accounting for random geometric uncertainties with a multiple instance geometry approximation (MIGA) [J].
McShan, D. L. ;
Kessler, M. L. ;
Vineberg, K. ;
Fraass, B. A. .
MEDICAL PHYSICS, 2006, 33 (05) :1510-1521