Iterative approximation for split common fixed point problem involving an asymptotically nonexpansive semigroup and a total asymptotically strict pseudocontraction

被引:5
作者
Cholamjiak, Prasit [1 ]
Shehu, Yekini [2 ]
机构
[1] Univ Phayao, Sch Sci, Phayao 56000, Thailand
[2] Univ Nigeria, Dept Math, Nsukka, Nigeria
关键词
total asymptotically strict pseudocontractive mapping; nonexpansive semigroup; split common fixed-point problems; strong convergence; Hilbert spaces; FEASIBILITY PROBLEM; CQ ALGORITHM; CONVERGENCE; SETS; THEOREMS;
D O I
10.1186/1687-1812-2014-131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the strong convergence theorem for split feasibility problem involving a uniformly asymptotically regular nonexpansive semigroup and a total asymptotically strict pseudocontractive mapping in Hilbert spaces. Our main results improve and extend some recent results in the literature.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 33 条
[1]   Strongly convergent approximations to fixed points of total asymptotically nonexpansive mappings [J].
Alber, Yakov ;
Espinola, Rafa ;
Lorenzo, Pepa .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (06) :1005-1022
[2]  
Aleyner A, 2005, J NONLINEAR CONVEX A, V6, P137
[3]  
BAILLON JB, 1975, CR ACAD SCI A MATH, V280, P1511
[5]   A unified treatment of some iterative algorithms in signal processing and image reconstruction [J].
Byrne, C .
INVERSE PROBLEMS, 2004, 20 (01) :103-120
[6]   The multiple-sets split feasibility problem and its applications for inverse problems [J].
Censor, Y ;
Elfving, T ;
Kopf, N ;
Bortfeld, T .
INVERSE PROBLEMS, 2005, 21 (06) :2071-2084
[7]  
Censor Y., 1994, Numerical Algorithms, V8, P221, DOI DOI 10.1007/BF02142692
[8]  
Censor Y, 2009, J CONVEX ANAL, V16, P587
[9]   Perturbed projections and subgradient projections for the multiple-sets split feasibility problem [J].
Censor, Yair ;
Motova, Avi ;
Segal, Alexander .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (02) :1244-1256
[10]   Split feasibility problem for quasi-nonexpansive multi-valued mappings and total asymptotically strict pseudo-contractive mapping [J].
Chang, S. S. ;
Lee, H. W. Joseph ;
Chan, C. K. ;
Wang, L. ;
Qin, L. J. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (20) :10416-10424