Heterogeneous Nanostructures for Plasmonic Interaction with Luminescence and Quantitative Surface-enhanced Raman Spectroscopy

被引:0
|
作者
Das, Gautom K. [1 ]
Sudheendra, L. [1 ]
Kennedy, Ian M. [1 ]
机构
[1] Univ Calif Davis, Dept Mech & Aerosp Engn, Davis, CA 95616 USA
关键词
Hetero-epitaxial growth; up-conversion enhancement; surface plasmon; Raman spectroscopy; SERS; UP-CONVERSION LUMINESCENCE; MOLECULAR FLUORESCENCE; NANOPARTICLES; NANOCRYSTALS; GROWTH; AU;
D O I
10.1117/12.2037889
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
NIR-to-visible up-conversion nanomaterials have been investigated in many promising applications including next-generation displays, solar cells, and biological labels. When doped with different trivalent lanthanide ions, NaYF4 nanoparticles can produce up-converted emission from visible to infra-red wavelengths. However, the quantum yield of this class of materials is low. Noble metals in the vicinity of the phosphor can increase the phosphorescence by local field enhancement due to plasmonic resonances, and by modification of the radiative rate of the phosphor. Most previous studies have investigated the phenomenon by placing nanophosphors onto a metal substrate, or by fabrication of nano structures with spacers such as polymers, dielectric materials (silica). By contrast, we have studied the interaction between the luminescence and the surface plasmon using a core-shell type nanostructure where a uniform shell of silver is shown to grown on doped-NaYF4 nanophosphors by Ostwald ripening. We further demonstrate the proximity effect of metal-enhanced luminescence by exciting an undoped NaYF4 shell. The result shows a significant synergistic enhancement of up-conversion luminescence due to the active shell as spacer layer. In addition, we have shown this novel nanostructure may be useful in surface-enhanced Raman spectroscopy (SERS).
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Plasmonic DNA-Origami Nanoantennas for Surface-Enhanced Raman Spectroscopy
    Kuehler, Paul
    Roller, Eva-Maria
    Schreiber, Robert
    Liedl, Tim
    Lohmueller, Theobald
    Feldmann, Jochen
    NANO LETTERS, 2014, 14 (05) : 2914 - 2919
  • [32] Transmission-type plasmonic sensor for surface-enhanced Raman spectroscopy
    Yanagisawa, Masahiro
    Saito, Mikiko
    Kunimoto, Masahiro
    Homma, Takayuki
    APPLIED PHYSICS EXPRESS, 2016, 9 (12)
  • [33] Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates
    Matricardi, Cristiano
    Hanske, Christoph
    Garcia-Pomar, Juan Luis
    Langer, Judith
    Mihi, Agustin
    Liz-Marzan, Luis M.
    ACS NANO, 2018, 12 (08) : 8531 - 8539
  • [34] Scalable Multilayered Plasmonic Nanoporous Films for Surface-Enhanced Raman Spectroscopy
    Zhang, Nan
    Sreekanth, Kandammathe Valiyaveedu
    Chen, Yi Fan
    Teo, Siew Lang
    Ke, Lin
    Zhao, Meng
    Teng, Jinghua
    ACS APPLIED OPTICAL MATERIALS, 2024, 2 (05): : 744 - 749
  • [35] Understanding the mechanism of plasmonic photocatalysis with ultrafast surface-enhanced Raman spectroscopy
    Keller, Emily
    Brooks, James
    Frontiera, Renee
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [36] Stretchable plasmonic substrate with tunable resonances for surface-enhanced Raman spectroscopy
    Wen, Jinxiu
    Zhang, Hongbo
    Chen, Huanjun
    Zhang, Weihong
    Chen, Jian
    JOURNAL OF OPTICS, 2015, 17 (11)
  • [37] DNA-Assisted Assembly of Plasmonic Core-Satellite Nanostructures for Surface-Enhanced Raman Spectroscopy (SERS)
    Wu, Li-An
    Li, Wei-En
    Chen, Yih-Fan
    2017 IEEE 12TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS), 2017, : 206 - 209
  • [38] Surface-enhanced Raman Spectroscopy
    Tomoaki Nishino
    Analytical Sciences, 2018, 34 : 1061 - 1062
  • [39] Surface-enhanced Raman spectroscopy
    Nature Reviews Methods Primers, 1
  • [40] Surface-enhanced Raman spectroscopy
    Jürgen Popp
    Thomas Mayerhöfer
    Analytical and Bioanalytical Chemistry, 2009, 394 : 1717 - 1718