Backward error and condition of polynomial eigenvalue problems

被引:194
作者
Tisseur, F [1 ]
机构
[1] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
polynomial eigenvalue problem; quadratic eigenvalue problem; generalized eigenvalue problem; backward error; condition number;
D O I
10.1016/S0024-3795(99)00063-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop normwise backward errors and condition numbers for the polynomial eigenvalue problem. The standard way of dealing with this problem is to reformulate it as a generalized eigenvalue problem (GEP). For the special case of the quadratic eigenvalue problem (QEP), we show that solving the QEP by applying the QZ algorithm to a corresponding GEP can be backward unstable. The QEP can be reformulated as a GEP in many ways. We investigate the sensitivity of a given eigenvalue to perturbations in each of the GEP formulations and identify which formulations are to be preferred for large and small eigenvalues, respectively. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:339 / 361
页数:23
相关论文
共 50 条
  • [31] A novel method to compute all eigenvalues of the polynomial eigenvalue problems in an open half plane
    Chen, Xiaoping
    Yang, Xi
    Wei, Wei
    Cao, Jinde
    Tang, Shuai
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02)
  • [32] More on pseudospectra for polynomial eigenvalue problems and applications in control theory
    Higham, NJ
    Tisseur, F
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 351 : 435 - 453
  • [33] A numerical method for polynomial eigenvalue problems using contour integral
    Junko Asakura
    Tetsuya Sakurai
    Hiroto Tadano
    Tsutomu Ikegami
    Kinji Kimura
    Japan Journal of Industrial and Applied Mathematics, 2010, 27 : 73 - 90
  • [34] On componentwise condition numbers for eigenvalue problems with structured matrices
    Diao, Huaian
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2009, 16 (02) : 87 - 107
  • [35] On structured componentwise condition numbers for Hamiltonian eigenvalue problems
    Diao, Huai-An
    Zhao, Jian
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 335 : 74 - 85
  • [36] Backward error and condition number of a generalized Sylvester equation, with application to the stochastic Galerkin method
    Pranesh, Srikara
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 594 : 95 - 116
  • [37] A numerical method for polynomial eigenvalue problems using contour integral
    Asakura, Junko
    Sakurai, Tetsuya
    Tadano, Hiroto
    Ikegami, Tsutomu
    Kimura, Kinji
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2010, 27 (01) : 73 - 90
  • [38] Backward error bounds for constrained least squares problems
    Cox, AJ
    Higham, NJ
    BIT NUMERICAL MATHEMATICS, 1999, 39 (02) : 210 - 227
  • [39] Backward Error Bounds for Constrained Least Squares Problems
    Anthony J. Cox
    Nicholas J. Higham
    BIT Numerical Mathematics, 1999, 39 : 210 - 227
  • [40] Improving backward stability of Sakurai-Sugiura method with balancing technique in polynomial eigenvalue problem
    Hongjia Chen
    Akira Imakura
    Tetsuya Sakurai
    Applications of Mathematics, 2017, 62 : 357 - 375