Backward error and condition of polynomial eigenvalue problems

被引:194
作者
Tisseur, F [1 ]
机构
[1] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
polynomial eigenvalue problem; quadratic eigenvalue problem; generalized eigenvalue problem; backward error; condition number;
D O I
10.1016/S0024-3795(99)00063-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop normwise backward errors and condition numbers for the polynomial eigenvalue problem. The standard way of dealing with this problem is to reformulate it as a generalized eigenvalue problem (GEP). For the special case of the quadratic eigenvalue problem (QEP), we show that solving the QEP by applying the QZ algorithm to a corresponding GEP can be backward unstable. The QEP can be reformulated as a GEP in many ways. We investigate the sensitivity of a given eigenvalue to perturbations in each of the GEP formulations and identify which formulations are to be preferred for large and small eigenvalues, respectively. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:339 / 361
页数:23
相关论文
共 50 条
  • [21] THE POLYNOMIAL EIGENVALUE PROBLEM IS WELL CONDITIONED FOR RANDOM INPUTS
    Armentano, Diego
    Beltran, Carlos
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2019, 40 (01) : 175 - 193
  • [22] Condition number and backward error for the generalized singular value decomposition
    Sun, JG
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 22 (02) : 323 - 341
  • [23] BACKWARD ERRORS AND PSEUDOSPECTRA FOR STRUCTURED NONLINEAR EIGENVALUE PROBLEMS
    Ahmad, Sk. Safique
    Mehrmann, Volker
    OPERATORS AND MATRICES, 2016, 10 (03): : 539 - 556
  • [24] Global bounds of backward errors of polynomial eigenvalue problem solved by a companion linearization
    Ziyin Yang
    Zekun Wang
    Zongqi Cao
    Xiang Wang
    Computational and Applied Mathematics, 2025, 44 (4)
  • [25] New backward error bounds of Rayleigh-Ritz projection methods for quadratic eigenvalue problem
    Wang, Teng
    Feng, Mei
    Wang, Xiang
    Chen, Hongjia
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (04) : 678 - 686
  • [26] Backward error analysis for linearizations in heavily damped quadratic eigenvalue problem
    Chen, Hongjia
    Meng, Jie
    Sakurai, Tetsuya
    Wang, Xiang
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2019, 26 (04)
  • [27] Backward error analysis of linearizing-balancing strategies for heavily damped quadratic eigenvalue problem
    Chen, Hongjia
    Du, Lei
    Cao, Zongqi
    APPLIED MATHEMATICS LETTERS, 2021, 120
  • [28] BACKWARD ERROR AND CONDITION OF STRUCTURED LINEAR-SYSTEMS
    HIGHAM, DJ
    HIGHAM, NJ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (01) : 162 - 175
  • [29] Structured Backward Error and Condition Number for Linear Systems of the Type A* Ax = b
    V. Frayssé
    S. Gratton
    V. Toumazou
    BIT Numerical Mathematics, 2000, 40 : 74 - 83
  • [30] Structured backward error and condition number for linear systems of the type A* Ax = b
    Frayssé, V
    Gratton, S
    Toumazou, V
    BIT NUMERICAL MATHEMATICS, 2000, 40 (01) : 74 - 83