Backward error and condition of polynomial eigenvalue problems

被引:198
作者
Tisseur, F [1 ]
机构
[1] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
polynomial eigenvalue problem; quadratic eigenvalue problem; generalized eigenvalue problem; backward error; condition number;
D O I
10.1016/S0024-3795(99)00063-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop normwise backward errors and condition numbers for the polynomial eigenvalue problem. The standard way of dealing with this problem is to reformulate it as a generalized eigenvalue problem (GEP). For the special case of the quadratic eigenvalue problem (QEP), we show that solving the QEP by applying the QZ algorithm to a corresponding GEP can be backward unstable. The QEP can be reformulated as a GEP in many ways. We investigate the sensitivity of a given eigenvalue to perturbations in each of the GEP formulations and identify which formulations are to be preferred for large and small eigenvalues, respectively. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:339 / 361
页数:23
相关论文
共 28 条
[1]   DERIVATIVES OF EIGENVALUES AND EIGENVECTORS OF MATRIX FUNCTIONS [J].
ANDREW, AL ;
CHU, KWE ;
LANCASTER, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (04) :903-926
[2]   EFFICIENT SOLUTION OF QUADRATIC EIGENPROBLEMS ARISING IN DYNAMIC ANALYSIS OF STRUCTURES [J].
BORRI, M ;
MANTEGAZZA, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1977, 12 (01) :19-31
[3]   PARTIAL EIGENSOLUTION OF DAMPED STRUCTURAL SYSTEMS BY ARNOLDIS METHOD [J].
CHEN, HC .
EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 1993, 22 (01) :63-74
[4]  
CLOUGH RW, 1976, EARTHQ ENG STRUCT D, V4, P489, DOI DOI 10.1002/EQE.4290040506
[5]  
DUFFIN RJ, 1955, J RATION MECH ANAL, V4, P221
[6]  
Fraysse V, 1998, NUMER LINEAR ALGEBR, V5, P1
[7]   A CONSTRAINED EIGENVALUE PROBLEM [J].
GANDER, W ;
GOLUB, GH ;
VONMATT, U .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 114 :815-839
[8]  
Golub G.H., 2013, MATRIX COMPUTATIONS
[9]   SCALING OF THE DISCRETE-TIME ALGEBRAIC RICCATI EQUATION TO ENHANCE STABILITY OF THE SCHUR SOLUTION METHOD [J].
GUDMUNDSSON, T ;
KENNEY, C ;
LAUB, AJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (04) :513-518
[10]   Nonlinear eigenproblems [J].
Guillaume, P .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 20 (03) :575-595