Radiomic signature: a non-invasive biomarker for discriminating invasive and non-invasive cases of lung adenocarcinoma

被引:20
作者
Yang, Bin [1 ]
Guo, Lili [2 ]
Lu, Guangming [1 ]
Shan, Wenli [2 ]
Duan, Lizhen [2 ]
Duan, Shaofeng [3 ]
机构
[1] Nanjing Univ, Med Sch, Jinling Hosp, Dept Med Imaging, Nanjing 210002, Jiangsu, Peoples R China
[2] Nanjing Med Univ, Affiliated Huaian Peoples Hosp 1, Dept Radiol, Huaian 223300, Peoples R China
[3] GE Healthcare China, Shanghai 210000, Peoples R China
关键词
lung adenocarcinoma; radiomics; biomarker; computed tomography; INTERNATIONAL MULTIDISCIPLINARY CLASSIFICATION; RESOLUTION COMPUTED-TOMOGRAPHY; IASLC/ATS/ERS CLASSIFICATION; PULMONARY ADENOCARCINOMA; PREINVASIVE LESIONS; TEXTURE ANALYSIS; SOLID COMPONENT; TUMOR SIZE; CANCER; ASSOCIATION;
D O I
10.2147/CMAR.S217887
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: We aimed to assess the classification performance of a computed tomography (CT)-based radiomic signature for discriminating invasive and non-invasive lung adenocarcinoma. Patients and Methods: A total of 192 patients (training cohort, n=116; validation cohort, n=76) with pathologically confirmed lung adenocarcinoma were retrospectively enrolled in the present study. Radiomic features were extracted from preoperative unenhanced chest CT images to build a radiomic signature. Predictive performance of the radiomic signature were evaluated using an intra-cross validation cohort. Diagnostic performance of the radiomic signature was assessed via receiver operating characteristic (ROC) analysis. Results: The radiomic signature consisted of 14 selected features and demonstrated good discrimination performance between invasive and non-invasive adenocarcinoma. The area under the ROC curve (AUC) for the training cohort was 0.83 (sensitivity, 0.84 ; specificity, 0.78; accuracy, 0.82), while that for the validation cohort was 0.77 (sensitivity, 0.94; specificity, 0.52 ; accuracy, 0.82). Conclusion: The CT-based radiomic signature exhibited good classification performance for discriminating invasive and non-invasive lung adenocarcinoma, and may represent a valuable biomarker for determining therapeutic strategies in this patient population.
引用
收藏
页码:7825 / 7834
页数:10
相关论文
共 31 条
[21]   Correlation between whole tumor size and solid component size on high-resolution computed tomography in the prediction of the degree of pathologic malignancy and the prognostic outcome in primary lung adenocarcinoma [J].
Saji, Hisashi ;
Matsubayashi, Jun ;
Akata, Soichi ;
Shimada, Yoshihisa ;
Kato, Yasufumi ;
Kudo, Yujin ;
Nagao, Toshitaka ;
Park, Jinho ;
Kakihana, Masatoshi ;
Kajiwara, Naohiro ;
Ohira, Tatsuo ;
Ikeda, Norihiko .
ACTA RADIOLOGICA, 2015, 56 (10) :1187-1195
[22]   Estimation of the pathological invasive size of pulmonary adenocarcinoma using high-resolution computed tomography of the chest: A consideration based on lung and mediastinal window settings [J].
Sakakura, Noriaki ;
Inaba, Yoshitaka ;
Yatabe, Yasushi ;
Mizuno, Tetsuya ;
Kuroda, Hiroaki ;
Yoshimura, Kenichi ;
Sakao, Yukinori .
LUNG CANCER, 2016, 95 :51-56
[23]   Cancer statistics, 2013 [J].
Siegel, Rebecca ;
Naishadham, Deepa ;
Jemal, Ahmedin .
CA-A CANCER JOURNAL FOR CLINICIANS, 2013, 63 (01) :11-30
[24]   Quantitative CT Analysis of Pulmonary Ground-Glass Opacity Nodules for the Distinction of Invasive Adenocarcinoma from Pre-Invasive or Minimally Invasive Adenocarcinoma [J].
Son, Ji Ye ;
Lee, Ho Yun ;
Lee, Kyung Soo ;
Kim, Jae-Hun ;
Han, Joungho ;
Jeong, Ji Yun ;
Kwon, O. Jung ;
Shim, Young Mog .
PLOS ONE, 2014, 9 (08)
[25]   Prognostic value of the IASLC/ATS/ERS classification in stage I lung adenocarcinoma patients-Based on a hospital study in China [J].
Song, Z. ;
Zhu, H. ;
Guo, Z. ;
Wu, W. ;
Sun, W. ;
Zhang, Y. .
EJSO, 2013, 39 (11) :1262-1268
[26]  
Travis William D, 2011, Proc Am Thorac Soc, V8, P381, DOI 10.1513/pats.201107-042ST
[27]   International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International Multidisciplinary Classification of Lung Adenocarcinoma [J].
Travis, William D. ;
Brambilla, Elisabeth ;
Noguchi, Masayuki ;
Nicholson, Andrew G. ;
Geisinger, Kim R. ;
Yatabe, Yasushi ;
Beer, David G. ;
Powell, Charles A. ;
Riely, Gregory J. ;
Van Schil, Paul E. ;
Garg, Kavita ;
Austin, John H. M. ;
Asamura, Hisao ;
Rusch, Valerie W. ;
Hirsch, Fred R. ;
Scagliotti, Giorgio ;
Mitsudomi, Tetsuya ;
Huber, Rudolf M. ;
Ishikawa, Yuichi ;
Jett, James ;
Sanchez-Cespedes, Montserrat ;
Sculier, Jean-Paul ;
Takahashi, Takashi ;
Tsuboi, Masahiro ;
Vansteenkiste, Johan ;
Wistuba, Ignacio ;
Yang, Pan-Chyr ;
Aberle, Denise ;
Brambilla, Christian ;
Flieder, Douglas ;
Franklin, Wilbur ;
Gazdar, Adi ;
Gould, Michael ;
Hasleton, Philip ;
Henderson, Douglas ;
Johnson, Bruce ;
Johnson, David ;
Kerr, Keith ;
Kuriyama, Keiko ;
Lee, Jin Soo ;
Miller, Vincent A. ;
Petersen, Iver ;
Roggli, Victor ;
Rosell, Rafael ;
Saijo, Nagahiro ;
Thunnissen, Erik ;
Tsao, Ming ;
Yankelewitz, David .
JOURNAL OF THORACIC ONCOLOGY, 2011, 6 (02) :244-285
[28]   Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology [J].
Wu, Weimiao ;
Parmar, Chintan ;
Grossmann, Patrick ;
Quackenbush, John ;
Lambin, Philippe ;
Bussink, Johan ;
Mak, Raymond ;
Aerts, Hugo J. W. L. .
FRONTIERS IN ONCOLOGY, 2016, 6
[29]   New IASLC/ATS/ERS Classification and Invasive Tumor Size are Predictive of Disease Recurrence in Stage I Lung Adenocarcinoma [J].
Yanagawa, Naoki ;
Shiono, Satoshi ;
Abiko, Masami ;
Ogata, Shin-ya ;
Sato, Toru ;
Tamura, Gen .
JOURNAL OF THORACIC ONCOLOGY, 2013, 8 (05) :612-618
[30]   Prognostic Role of Subtype Classification in Small-Sized Pathologic N0 Invasive Lung Adenocarcinoma [J].
Yoshiya, Tomoharu ;
Mimae, Takahiro ;
Tsutani, Yasuhiro ;
Tsubokawa, Norifumi ;
Sasada, Shinsuke ;
Miyata, Yoshihiro ;
Kushitani, Kei ;
Takeshima, Yukio ;
Murakami, Shuji ;
Ito, Hiroyuki ;
Nakayama, Haruhiko ;
Okada, Morihito .
ANNALS OF THORACIC SURGERY, 2016, 102 (05) :1668-1673