WHEN DO THE DIRECT SUMS OF MODULES INHERIT CERTAIN PROPERTIES?

被引:0
作者
Lee, Gangyong [1 ]
Rizvi, S. Tariq [2 ]
Roman, Cosmin [2 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Math, Lima, OH 45804 USA
来源
CONTEMPORARY RING THEORY 2011 | 2012年
关键词
Direct sums; Rickart modules; Baer modules; (FI-)extending modules; (quasi-) continuous modules; annihilators; idempotents; endomorphism rings; QUASI-BAER RINGS; SUMMAND INTERSECTION PROPERTY; ENDOMORPHISM-RINGS; EXTENDING MODULES; RICKART MODULES; PP RINGS; EXTENSIONS; IDEALS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is of obvious interest to know whether an algebraic property of modules is preserved by direct sums of such modules. In this paper we provide a survey of this question for various classes of modules of interest. The question of inheritance of a property by direct sums of modules has been explored for the classes of (quasi-)injective modules and some of their generalizations as a motivation for further work. In the main part of this paper we provide latest results and developments on this question for the related classes of Baer, quasi-Baer, and Rickart modules. Examples are provided that delimit our results and explain the notions. Some open problems are listed at the end of the paper.
引用
收藏
页码:47 / 77
页数:31
相关论文
共 56 条
[1]  
[Anonymous], 1973, Algebra: Rings, modules, and categories
[2]  
[Anonymous], 1972, Grundlehren der mathematischen Wissenschaften
[3]   Triangular matrix representations [J].
Birkenmeier, GF ;
Heatherly, HE ;
Kim, JY ;
Park, JK .
JOURNAL OF ALGEBRA, 2000, 230 (02) :558-595
[4]   Quasi-Baer ring extensions and biregrular rings [J].
Birkenmeier, GF ;
Kim, JY ;
Park, JK .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 61 (01) :39-52
[5]   A sheaf representation of quasi-Baer rings [J].
Birkenmeier, GF ;
Kim, JY ;
Park, JK .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 146 (03) :209-223
[6]   Modules in which every fully invariant submodule is essential in a direct summand [J].
Birkenmeier, GF ;
Müller, BJ ;
Rizvi, ST .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (03) :1395-1415
[7]   Polynomial extensions of Baer and quasi-Baer rings [J].
Birkenmeier, GF ;
Kim, JY ;
Park, JK .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2001, 159 (01) :25-42
[8]  
Birkenmeier GF., 2000, Contemp. Math, V259, P67, DOI [10.1090/conm/259/04088, DOI 10.1090/CONM/259/04088]
[9]  
Chase S. U., 1960, T AM MATH SOC, V97, P457, DOI 10.2307/1993382
[10]   ENDOMORPHISM-RINGS OF MODULES OVER NON-SINGULAR CS RINGS [J].
CHATTERS, AW ;
KHURI, SM .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1980, 21 (JUN) :434-444