Stable microstructure in a nanocrystalline copper-tantalum alloy during shock loading

被引:18
作者
Chad Hornbuckle, B. [1 ]
Williams, Cyril L. [1 ]
Dean, Steven W. [1 ]
Zhou, Xuyang [2 ]
Kale, Chaitanya [3 ]
Turnage, Scott A. [1 ]
Clayton, John D. [1 ]
Thompson, Gregory B. [2 ]
Giri, Anit K. [1 ]
Solanki, Kiran N. [3 ]
Darling, Kristopher A. [1 ]
机构
[1] Army Res Lab, Weap & Mat Res Directorate, Aberdeen Proving Ground, MD 21005 USA
[2] Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL 35487 USA
[3] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85281 USA
基金
美国国家科学基金会;
关键词
GRAIN-SIZE; MOLECULAR-DYNAMICS; NICKEL; STRESS; STRENGTH; CREEP; DEFORMATION; TEMPERATURE; COMPRESSION; EVOLUTION;
D O I
10.1038/s43246-020-0024-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The microstructures of materials typically undergo significant changes during shock loading, causing failure when higher shock pressures are reached. However, preservation of microstructural and mechanical integrity during shock loading are essential in situations such as space travel, nuclear energy, protection systems, extreme geological events, and transportation. Here, we report ex situ shock behavior of a chemically optimized and microstructurally stable, bulk nanocrystalline copper-tantalum alloy that shows a relatively unchanged microstructure or properties when shock compressed up to 15GPa. The absence of shock-hardening indicates that the grains and grain boundaries that make up the stabilized nanocrystalline microstructure act as stable sinks, thereby annihilating deformation-induced defects during shock loading. This study helps to advance the possibility of developing advanced structural materials for extreme applications where shock loading occurs. Shock loading of materials alters the microstructure and considerably degrades mechanical performance. Here, shock loading of a nanocrystalline Cu-Ta alloy is found to induce minor changes to microstructure and mechanical performance, attributed to the annihilation of defects during deformation.
引用
收藏
页数:6
相关论文
共 50 条
[1]   Controlling Radiation Damage [J].
Ackland, Graeme .
SCIENCE, 2010, 327 (5973) :1587-1588
[2]  
Anderson PM, 2014, HANDBOOK OF NANOMATERIALS PROPERTIES, P495, DOI 10.1007/978-3-642-31107-9_20
[3]  
[Anonymous], 1994, Dynamic Behavior of Materials, P66
[4]   The role of Ta on twinnability in nanocrystalline Cu-Ta alloys [J].
Bhatia, M. A. ;
Rajagopalan, M. ;
Darling, K. A. ;
Tschopp, M. A. ;
Solanki, K. N. .
MATERIALS RESEARCH LETTERS, 2017, 5 (01) :48-54
[5]   Theoretical interpretation of abnormal ultrafine-grained material deformation dynamics [J].
Borodin, Elijah N. ;
Mayer, Alexander E. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2016, 24 (02)
[6]   Grain coarsening during compression of bulk nanocrystalline nickel and copper [J].
Brandstetter, S. ;
Zhang, Kai ;
Escuadro, A. ;
Weertman, J. R. ;
Van Swygenhoven, H. .
SCRIPTA MATERIALIA, 2008, 58 (01) :61-64
[7]   Ultrahigh strength in nanocrystalline materials under shock loading [J].
Bringa, EM ;
Caro, A ;
Wang, YM ;
Victoria, M ;
McNaney, JM ;
Remington, BA ;
Smith, RF ;
Torralva, BR ;
Van Swygenhoven, H .
SCIENCE, 2005, 309 (5742) :1838-1841
[8]   Shock wave propagation and spall failure of nanocrystalline Cu/Ta alloys: Effect of Ta in solid-solution [J].
Chen, Jie ;
Tschopp, Mark A. ;
Dongare, Avinash M. .
JOURNAL OF APPLIED PHYSICS, 2017, 122 (22)
[9]   Nanoscale room temperature creep of nanocrystalline nickel pillars at low stresses [J].
Choi, In-Chul ;
Kim, Yong-Jae ;
Seok, Moo-Young ;
Yoo, Byung-Gil ;
Kim, Ju-Young ;
Wang, Yinmin ;
Jang, Jae-il .
INTERNATIONAL JOURNAL OF PLASTICITY, 2013, 41 :53-64
[10]   Nanocrystalline electrodeposited Ni: microstructure and tensile properties [J].
Dalla Torre, F ;
Van Swygenhoven, H ;
Victoria, M .
ACTA MATERIALIA, 2002, 50 (15) :3957-3970