Nonexistence of Global Solutions of the Cauchy Problem for Systems of Klein-Gordon Equations with Positive Initial Energy

被引:6
作者
Aliev, A. B. [1 ]
Kazimov, A. A.
机构
[1] Natl Acad Sci, Inst Math & Mech, Baku, Azerbaijan
关键词
EVOLUTION-EQUATIONS; WAVE-EQUATIONS; BLOW-UP;
D O I
10.1134/S0012266115120034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Cauchy problem for systems of weakly coupled Klein-Gordon equations with dissipations. We prove a theorem on the nonexistence of global solutions with positive initial energy.
引用
收藏
页码:1563 / 1568
页数:6
相关论文
共 12 条
[1]  
ALIEV AB, 1978, DOKL AKAD NAUK SSSR+, V240, P249
[2]  
[Anonymous], T MAT I STEKLOVA
[3]  
[Anonymous], J DIFFERENTIAL EQUAT
[4]   Vector nonlinear Klein-Gordon lattices: General derivation of small amplitude envelope soliton solutions [J].
Cocco, S ;
Barbi, M ;
Peyrard, M .
PHYSICS LETTERS A, 1999, 253 (3-4) :161-167
[5]  
Kazymov A. A., 2013, DIFFER EQUATIONS, V49, P476
[6]   SOME ADDITIONAL REMARKS ON NONEXISTENCE OF GLOBAL SOLUTIONS TO NONLINEAR-WAVE EQUATIONS [J].
LEVINE, HA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1974, 5 (01) :138-146
[7]   Global nonexistence theorems for quasilinear evolution equations with dissipation [J].
Levine, HA ;
Serrin, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1997, 137 (04) :341-361
[8]   Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy [J].
Levine, HA ;
Todorova, G .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (03) :793-805
[9]   Global existence, asymptotic behavior and blow-up of solutions for coupled Klein-Gordon equations with damping terms [J].
Liu, Wenjun .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) :244-255
[10]   A method for characterizing the biodiversity in bat pinnae as a basis for engineering analysis [J].
Ma, Jianguo ;
Mueller, Rolf .
BIOINSPIRATION & BIOMIMETICS, 2011, 6 (02)