Levant's Arbitrary-Order Exact Differentiator: A Lyapunov Approach

被引:111
作者
Cruz-Zavala, Emmanuel [1 ]
Moreno, Jaime A. [2 ]
机构
[1] Univ Guadalajara, Ctr Univ Ciencias Exactas & Ingn, Dept Comp Sci, Guadalajara 44430, Jalisco, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Ingn, Mexico City 04510, DF, Mexico
关键词
Nonlinear systems; observers; sliding mode control; RECURSIVE OBSERVER DESIGN; FINITE-TIME; HOMOGENEOUS APPROXIMATION; NONLINEAR-SYSTEMS; STABILIZATION;
D O I
10.1109/TAC.2018.2874721
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a family of smooth explicit Lyapunov functions (LF) for Levant's differentiator, which is a discontinuous real-time robust and exact differentiator. These LF allow the analysis of the convergence and performance properties and the design of appropriate gains for the differentiator.
引用
收藏
页码:3034 / 3039
页数:6
相关论文
共 26 条
[1]   Homogeneous approximation, recursive observer design, and output feedback [J].
Andrieu, Vincent ;
Praly, Laurent ;
Astolfi, Alessandro .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (04) :1814-1850
[2]  
[Anonymous], 2000, Journal of Signal Processing
[3]  
Bacciotti A., 2005, Liapunov Functions and Stability in Control Theory, Vsecond
[4]   Finite- and fixed-time differentiators utilising HOSM techniques [J].
Basin, Michael ;
Yu, Polk ;
Shtessel, Yuri .
IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (08) :1144-1152
[5]   On homogeneity and its application in sliding mode control [J].
Bernuau, Emmanuel ;
Efimov, Denis ;
Perruquetti, Wilfrid ;
Polyakov, Andrey .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2014, 351 (04) :1866-1901
[6]   Geometric homogeneity with applications to finite-time stability [J].
Bhat, SP ;
Bernstein, DS .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2005, 17 (02) :101-127
[7]   Second-order sliding-mode observer for mechanical systems [J].
Davila, J ;
Fridman, L ;
Levant, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) :1785-1789
[8]   Nonsmooth stabilization of a class of nonlinear cascaded systems [J].
Ding, Shihong ;
Li, Shihua ;
Zheng, Wei Xing .
AUTOMATICA, 2012, 48 (10) :2597-2606
[9]   A Hybrid Robust Non-Homogeneous Finite-Time Differentiator [J].
Efimov, Denis V. ;
Fridman, Leonid .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (05) :1213-1219
[10]  
Filippov A. F., 1988, Math. Appl. (Soviet Series), P1