Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy

被引:280
作者
Bengtsson, Niclas E. [1 ,2 ]
Hall, John K. [1 ,2 ]
Odom, Guy L. [1 ,2 ]
Phelps, Michael P. [3 ]
Andrus, Colin R. [4 ,5 ]
Hawkins, R. David [4 ,5 ]
Hauschka, Stephen D. [2 ,6 ]
Chamberlain, Joel R. [2 ,4 ]
Chamberlain, Jeffrey S. [1 ,2 ,4 ,6 ]
机构
[1] Univ Washington, Dept Neurol, Seattle, WA 98195 USA
[2] Univ Washington, Senator Paul D Wellstone Muscular Dystrophy Coope, Seattle, WA 98195 USA
[3] Univ Washington, Dept Pathol, Seattle, WA 98195 USA
[4] Univ Washington, Dept Med, Seattle, WA 98195 USA
[5] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[6] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
关键词
MDX MICE; CRISPR-CAS9; EXPRESSION; SKELETAL; VECTORS;
D O I
10.1038/ncomms14454
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gene replacement therapies utilizing adeno-associated viral (AAV) vectors hold great promise for treating Duchenne muscular dystrophy (DMD). A related approach uses AAV vectors to edit specific regions of the DMD gene using CRISPR/Cas9. Here we develop multiple approaches for editing the mutation in dystrophic mdx(4cv) mice using single and dual AAV vector delivery of a muscle-specific Cas9 cassette together with single-guide RNA cassettes and, in one approach, a dystrophin homology region to fully correct the mutation. Muscle-restricted Cas9 expression enables direct editing of the mutation, multiexon deletion or complete gene correction via homologous recombination in myogenic cells. Treated muscles express dystrophin in up to 70% of the myogenic area and increased force generation following intramuscular delivery. Furthermore, systemic administration of the vectors results in widespread expression of dystrophin in both skeletal and cardiac muscles. Our results demonstrate that AAV-mediated muscle-specific gene editing has significant potential for therapy of neuromuscular disorders.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Development of a CRISPR/Cas9 System for Methylococcus capsulatus In Vivo Gene Editing [J].
Tapscott, Timothy ;
Guarnieri, Michael T. ;
Henard, Calvin A. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2019, 85 (11)
[32]   Effects of Chronic, Maximal Phosphorodiamidate Morpholino Oligomer (PMO) Dosing on Muscle Function and Dystrophin Restoration in a Mouse Model of Duchenne Muscular Dystrophy [J].
Klimek, Margaret E. Benny ;
Vila, Maria Candida ;
Edwards, Katie ;
Boehler, Jessica ;
Novak, James ;
Zhang, Aiping ;
Van der Meulen, Jack ;
Tatum, Kathleen ;
Quinn, James ;
Fiorillo, Alyson ;
Burki, Umar ;
Straub, Volker ;
Lu, Qi Long ;
Hathout, Yetrib ;
van Den Anker, John ;
Partridge, Terence A. ;
Morales, Melissa ;
Hoffman, Eric ;
Nagaraju, Kanneboyina .
JOURNAL OF NEUROMUSCULAR DISEASES, 2021, 8 :S369-S381
[33]   Efficient gene editing in adult mouse livers via adenoviral delivery of CRISPR/Cas9 [J].
Cheng, Ranran ;
Peng, Jin ;
Yan, Yonghong ;
Cao, Peili ;
Wang, Jiewei ;
Qiu, Chen ;
Tang, Lichun ;
Liu, Di ;
Tang, Li ;
Jin, Jianping ;
Huang, Xingxu ;
He, Fuchu ;
Zhang, Pumin .
FEBS LETTERS, 2014, 588 (21) :3954-3958
[34]   Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy [J].
Long, Chengzu ;
Amoasii, Leonela ;
Mireault, Alex A. ;
McAnally, John R. ;
Li, Hui ;
Sanchez-Ortiz, Efrain ;
Bhattacharyya, Samadrita ;
Shelton, John M. ;
Bassel-Duby, Rhonda ;
Olson, Eric N. .
SCIENCE, 2016, 351 (6271) :400-403
[35]   Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy [J].
Moretti, A. ;
Fonteyne, L. ;
Giesert, F. ;
Hoppmann, P. ;
Meier, A. B. ;
Bozoglu, T. ;
Baehr, A. ;
Schneider, C. M. ;
Sinnecker, D. ;
Klett, K. ;
Froehlich, T. ;
Rahman, F. Abdel ;
Haufe, T. ;
Sun, S. ;
Jurisch, V. ;
Kessler, B. ;
Hinkel, R. ;
Dirschinger, R. ;
Martens, E. ;
Jilek, C. ;
Graf, A. ;
Krebs, S. ;
Santamaria, G. ;
Kurome, M. ;
Zakhartchenko, V. ;
Campbell, B. ;
Voelse, K. ;
Wolf, A. ;
Ziegler, T. ;
Reichert, S. ;
Lee, S. ;
Flenkenthaler, F. ;
Dorn, T. ;
Jeremias, I. ;
Blum, H. ;
Dendorfer, A. ;
Schnieke, A. ;
Krause, S. ;
Walter, M. C. ;
Klymiuk, N. ;
Laugwitz, K. L. ;
Wolf, E. ;
Wurst, W. ;
Kupatt, C. .
NATURE MEDICINE, 2020, 26 (02) :207-+
[36]   Muscle-specific gene editing improves molecular and phenotypic defects in a mouse model of myotonic dystrophy type 1 [J].
Izzo, Mariapaola ;
Battistini, Jonathan ;
Golini, Elisabetta ;
Voellenkle, Christine ;
Provenzano, Claudia ;
Orsini, Tiziana ;
Strimpakos, Georgios ;
Scavizzi, Ferdinando ;
Raspa, Marcello ;
Baci, Denisa ;
Frolova, Svetlana ;
Tastsoglou, Spyros ;
Zaccagnini, Germana ;
Garcia-Manteiga, Jose Manuel ;
Gourdon, Genevieve ;
Mandillo, Silvia ;
Cardinali, Beatrice ;
Martelli, Fabio ;
Falcone, Germana .
CLINICAL AND TRANSLATIONAL MEDICINE, 2025, 15 (02)
[37]   CRISPR/Cas9 mediated sex-ratio distortion by sex specific gene editing in Aedes aegypti [J].
Ranian, Kanwal ;
Zahoor, Muhammad Kashif ;
Zulhussnain, Muhammad ;
Ahmad, Aftab .
SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2022, 29 (04) :3015-3022
[38]   Combining CRISPR/Cas9 and rAAV Templates for Efficient Gene Editing [J].
Kaulich, Manuel ;
Dowdy, Steven F. .
NUCLEIC ACID THERAPEUTICS, 2015, 25 (06) :287-296
[39]   Off-target effects in CRISPR/Cas9 gene editing [J].
Guo, Congting ;
Ma, Xiaoteng ;
Gao, Fei ;
Guo, Yuxuan .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2023, 11
[40]   Recent advances of CRISPR/Cas9 gene editing in the treatment of β-thalassemia [J].
Jie, Qian ;
Lei, Shuangyin ;
Qu, Chao ;
Wu, Hao ;
Liu, Yingru ;
Huang, Ping ;
Teng, Shuzhi .
CHINESE SCIENCE BULLETIN-CHINESE, 2022, 67 (21) :2492-2508