Overlapping communities detection of social network based on hybrid C-means clustering algorithm

被引:25
|
作者
Lei, Yu [1 ,2 ]
Zhou, Ying [1 ,2 ]
Shi, Jiao [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen, Peoples R China
基金
中国博士后科学基金;
关键词
Community detection; Complex networks; Hybrid clustering; Soft computing; Social network; GENETIC ALGORITHMS; NEURAL-NETWORKS; FUZZY;
D O I
10.1016/j.scs.2019.101436
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
As an important part of social computing, community detection has been attached to more and more importance in social network analysis. Overlapping communities detection, one of significant topics, is benefit to understand properties of knowledge sharing organization in social network. Because of uncertainties inherent in knowledge sharing organization, good results are hard to gain by using traditional community detection technologies. Through complement of both fuzzy sets and rough sets, this paper proposed a novel hybrid clustering method, which uses fuzzy partitioning technique to replace a traversal search method for discovering overlapping community structures. The final representation leads to an efficient description of overlapping regions among communities, as well as uncertainties in class boundaries. Meanwhile, with considering both local and global structural features of knowledge sharing organization in complex networks, a meaningful similarity measure for each pair of objects is designed. As a result, our proposed method can effectively and efficiently detect communities whose boundaries are not easily separated from each other. Further, experimental results on synthetic complex networks and real-world networks demonstrate that the proposed method works well on detecting overlapping community structures in a knowledge sharing organization of complex networks.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Vague C-means clustering algorithm
    Xu, Chao
    Zhang, Peilin
    Li, Bing
    Wu, Dinghai
    Fan, Hongbo
    PATTERN RECOGNITION LETTERS, 2013, 34 (05) : 505 - 510
  • [2] A Hybrid Clustering Algorithm Based on Fuzzy c-Means and Improved Particle Swarm Optimization
    Shouwen Chen
    Zhuoming Xu
    Yan Tang
    Arabian Journal for Science and Engineering, 2014, 39 : 8875 - 8887
  • [3] Overlapping community detection algorithm based on fuzzy hierarchical clustering in social network
    School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an
    710049, China
    不详
    710049, China
    Hsi An Chiao Tung Ta Hsueh, 2 (6-13): : 6 - 13
  • [4] Kernel-Based Fuzzy C-Means Clustering Algorithm for RBF Network Initialization
    Czarnowski, Ireneusz
    Jedrzejowicz, Piotr
    INTELLIGENT DECISION TECHNOLOGIES 2016, PT I, 2016, 56 : 337 - 347
  • [5] LapEFCM: overlapping community detection using laplacian eigenmaps and fuzzy C-means clustering
    Hasan A.
    Kamal A.
    International Journal of Information Technology, 2022, 14 (6) : 3133 - 3144
  • [6] An ordered clustering algorithm based on fuzzy c-means and PROMETHEE
    Chengzu Bai
    Ren Zhang
    Longxia Qian
    Lijun Liu
    Yaning Wu
    International Journal of Machine Learning and Cybernetics, 2019, 10 : 1423 - 1436
  • [7] NCM: Neutrosophic c-means clustering algorithm
    Guo, Yanhui
    Sengur, Abdulkadir
    PATTERN RECOGNITION, 2015, 48 (08) : 2710 - 2724
  • [8] A modified rough c-means clustering algorithm based on hybrid imbalanced measure of distance and density
    Zhang, Tengfei
    Chen, Long
    Ma, Fumin
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2014, 55 (08) : 1805 - 1818
  • [9] A genetic hard c-means clustering algorithm
    Meng, L
    Wu, QH
    Yong, ZZ
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2002, 9 (03): : 421 - 438
  • [10] A possibilistic fuzzy c-means clustering algorithm
    Pal, NR
    Pal, K
    Keller, JM
    Bezdek, JC
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (04) : 517 - 530