A review of large-area bilayer graphene synthesis by chemical vapor deposition

被引:75
作者
Fang, Wenjing [1 ]
Hsu, Allen L. [1 ,2 ]
Song, Yi [1 ]
Kong, Jing [1 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Stanford Res Inst Int, Menlo Pk, CA 94025 USA
关键词
CU-NI ALLOY; THERMAL-DECOMPOSITION; HIGH-QUALITY; EPITAXIAL GRAPHENE; MONOLAYER GRAPHENE; GROWTH-MECHANISM; SINGLE-LAYER; CARBON; FILMS; COPPER;
D O I
10.1039/c5nr04756k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bilayer graphene has attracted considerable attention due to its potential as a tunable band gap in AB-stacked bilayers. Recently, great advancements have been made in the synthesis of chemical-vapor-deposited bilayer graphene. This featured article provides a detailed and up-to-date review of the synthesis of bilayer graphene by chemical vapor deposition (CVD). We will discuss various approaches to synthesize bilayer graphene and the corresponding growth dynamics. Methods for identifying the growth mechanism of bilayer graphene on Cu enclosures are highlighted for a deeper understanding of better control over uniformity and thickness.
引用
收藏
页码:20335 / 20351
页数:17
相关论文
共 110 条
[1]   Mass-related inversion symmetry breaking and phonon self-energy renormalization in isotopically labeled AB-stacked bilayer graphene [J].
Araujo, Paulo T. ;
Frank, Otakar ;
Mafra, Daniela L. ;
Fang, Wenjing ;
Kong, Jing ;
Dresselhaus, Mildred S. ;
Kalbac, Martin .
SCIENTIFIC REPORTS, 2013, 3
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst [J].
Bhaviripudi, Sreekar ;
Jia, Xiaoting ;
Dresselhaus, Mildred S. ;
Kong, Jing .
NANO LETTERS, 2010, 10 (10) :4128-4133
[5]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[6]   The thermal decomposition of hydrocarbons Part I [Methane, ethane, ethylene, and acetylene] [J].
Bone, WA ;
Coward, HF .
JOURNAL OF THE CHEMICAL SOCIETY, 1908, 93 :1197-1225
[7]   THERMAL-DECOMPOSITION OF METHANE .1. KINETICS OF PRIMARY DECOMPOSITION TO C2H6 + H2 - RATE CONSTANT FOR HOMOGENEOUS UNIMOLECULAR DISSOCIATION OF METHANE AND ITS PRESSURE-DEPENDENCE [J].
CHEN, CJ ;
BACK, MH ;
BACK, RA .
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1975, 53 (23) :3580-3590
[8]   Millimeter-Size Single-Crystal Graphene by Suppressing Evaporative Loss of Cu During Low Pressure Chemical Vapor Deposition [J].
Chen, Shanshan ;
Ji, Hengxing ;
Chou, Harry ;
Li, Qiongyu ;
Li, Hongyang ;
Suk, Ji Won ;
Piner, Richard ;
Liao, Lei ;
Cai, Weiwei ;
Ruoff, Rodney S. .
ADVANCED MATERIALS, 2013, 25 (14) :2062-2065
[9]   Graphene-nickel interfaces: a review [J].
Dahal, Arjun ;
Batzill, Matthias .
NANOSCALE, 2014, 6 (05) :2548-2562
[10]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215