CHARACTERISATION OF THE BERKOVICH SPECTRUM OF THE BANACH ALGEBRA OF BOUNDED CONTINUOUS FUNCTIONS

被引:0
作者
Mihara, Tomoki
机构
来源
DOCUMENTA MATHEMATICA | 2014年 / 19卷
关键词
Berkovich spectrum; Stone space; Banaschewski compactification; non-Archimedean Gel'fand-Naimark theorem; non-Archimedean Gel'fand theory; non-Archimedean Kaplansky conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a complete valuation field k and a topological space X, we prove the universality of the underlying topological space of the Berkovich spectrum of the Banach k-algebra C-bd (X, k) of bounded continuous k-valued functions on X. This result yields three applications: a partial solution to an analogue of Kaplansky conjecture for the automatic continuity problem over a local field, comparison of two ground field extensions of Cbd(X, and non-Archimedean Gel'fand theory.
引用
收藏
页码:769 / 799
页数:31
相关论文
共 23 条
[21]  
Tarizadeh Abolfazl, PREPRINT
[22]  
Vladimir G, 1990, MATH SURVEYS MONOGRA, V33
[23]  
WOODIN WH, 1993, J LOND MATH SOC, V48, P299