CHARACTERISATION OF THE BERKOVICH SPECTRUM OF THE BANACH ALGEBRA OF BOUNDED CONTINUOUS FUNCTIONS

被引:0
作者
Mihara, Tomoki
机构
来源
DOCUMENTA MATHEMATICA | 2014年 / 19卷
关键词
Berkovich spectrum; Stone space; Banaschewski compactification; non-Archimedean Gel'fand-Naimark theorem; non-Archimedean Gel'fand theory; non-Archimedean Kaplansky conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a complete valuation field k and a topological space X, we prove the universality of the underlying topological space of the Berkovich spectrum of the Banach k-algebra C-bd (X, k) of bounded continuous k-valued functions on X. This result yields three applications: a partial solution to an analogue of Kaplansky conjecture for the automatic continuity problem over a local field, comparison of two ground field extensions of Cbd(X, and non-Archimedean Gel'fand theory.
引用
收藏
页码:769 / 799
页数:31
相关论文
共 23 条
  • [1] [Anonymous], 1986, Cambridge studies in advanced mathematics
  • [2] Banaschewski B., 1955, MATH NACHR, V13, P129, DOI DOI 10.1002/MANA.19550130302
  • [3] Berkovich VG, 1993, PUBL MATH, P5
  • [4] BORCEUX F., 2001, CAM ST AD M, V72
  • [5] Bosch S., 1984, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, V261, DOI DOI 10.1007/978-3-642-52229-1
  • [6] Bourbaki Nicolas, 1953, ELEMENTS MATH
  • [7] Dieudonne J., 1944, B SCI MATH, V68, P79
  • [8] Douglas R.G., 1972, Pure and Applied Mathematics, V49
  • [9] Engelking R., 1977, GEN TOPOLOGY
  • [10] Escassut A, 2013, CONTEMP MATH, V596, P63