Congruences involving Bernoulli numbers and Fermat-Euler quotients.

被引:2
作者
Agoh, T [1 ]
机构
[1] Sci Univ Tokyo, Dept Math, Noda, Chiba 2788510, Japan
关键词
Bernoulli numbers; Fermat-Euler quotients; class number of quadratic number fields;
D O I
10.1006/jnth.2001.2728
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B-m be the mth Bernoulli number in the even suffix notation and let q(a, n) = (a(phi(n)) - 1)/n be the Fermat-Euler quotient, where a, n greater than or equal to 2 are relatively prime positive integers and phi is the Euler totient function. The main purpose of this paper is to devise a certain congruence involving the Bernoulli number and Fermat-Euler quotient, which leads to several important arithmetic properties of Bernoulli numbers. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:1 / 9
页数:9
相关论文
共 12 条
[1]   Fermat quotients for composite moduli [J].
Agoh, T ;
Dilcher, K ;
Skula, L .
JOURNAL OF NUMBER THEORY, 1997, 66 (01) :29-50
[2]   ON BERNOULLI AND EULER NUMBERS [J].
AGOH, T .
MANUSCRIPTA MATHEMATICA, 1988, 61 (01) :1-10
[3]  
AGOH T, 1985, C R MATH REP ACAD SC, V7, P15
[4]   THE CLASS-NUMBER OF REAL QUADRATIC NUMBER FIELDS [J].
ANKENY, NC ;
ARTIN, E ;
CHOWLA, S .
ANNALS OF MATHEMATICS, 1952, 56 (03) :479-493
[5]  
[Anonymous], 1923, TRAITE ELEMENTAIRE N
[6]  
[Anonymous], 1996, EXPO MATH
[7]  
Friedmann A, 1909, J REINE ANGEW MATH, V135, P146
[8]  
FROBERG CE, 1971, NORD TIDSKR INFORM, V11, P389
[9]   P-ADIC PROOFS OF CONGRUENCES FOR BERNOULLI NUMBERS [J].
JOHNSON, W .
JOURNAL OF NUMBER THEORY, 1975, 7 (02) :251-265
[10]  
KISELEV AA, 1948, DOKL AKAD NAUK SSSR+, V61, P777