Mapping twenty years of corn and soybean across the US Midwest using the Landsat archive

被引:70
|
作者
Wang, Sherrie [1 ,2 ]
Di Tommaso, Stefania [2 ]
Deines, Jillian M. [2 ]
Lobell, David B. [2 ]
机构
[1] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Ctr Food Secur & Environm, Stanford, CA 94305 USA
关键词
UNITED-STATES; WINTER-WHEAT; YIELD; CROPLAND; SCIENCE; IMPACT; MODEL; NDVI;
D O I
10.1038/s41597-020-00646-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Field-level monitoring of crop types in the United States via the Cropland Data Layer (CDL) has played an important role in improving production forecasts and enabling large-scale study of agricultural inputs and outcomes. Although CDL offers crop type maps across the conterminous US from 2008 onward, such maps are missing in many Midwestern states or are uneven in quality before 2008. To fill these data gaps, we used the now-public Landsat archive and cloud computing services to map corn and soybean at 30m resolution across the US Midwest from 1999-2018. Our training data were CDL from 2008-2018, and we validated the predictions on CDL 1999-2007 where available, county-level crop acreage statistics, and state-level crop rotation statistics. The corn-soybean maps, which we call the Corn-Soy Data Layer (CSDL), are publicly hosted on Google Earth Engine and also available for download online
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Mapping twenty years of corn and soybean across the US Midwest using the Landsat archive
    Sherrie Wang
    Stefania Di Tommaso
    Jillian M. Deines
    David B. Lobell
    Scientific Data, 7
  • [2] High-Resolution Soybean Yield Mapping Across the US Midwest Using Subfield Harvester Data
    Dado, Walter T.
    Deines, Jillian M.
    Patel, Rinkal
    Liang, Sang-Zi
    Lobell, David B.
    REMOTE SENSING, 2020, 12 (21) : 1 - 22
  • [3] Continental Scale Mapping of Tidal Flats across East Asia Using the Landsat Archive
    Murray, Nicholas J.
    Phinn, Stuart R.
    Clemens, Robert S.
    Roelfsema, Chris M.
    Fuller, Richard A.
    REMOTE SENSING, 2012, 4 (11) : 3417 - 3426
  • [4] Rapid corn and soybean mapping in US Corn Belt and neighboring areas
    Zhong, Liheng
    Yu, Le
    Li, Xuecao
    Hu, Lina
    Gong, Peng
    SCIENTIFIC REPORTS, 2016, 6
  • [5] Rapid corn and soybean mapping in US Corn Belt and neighboring areas
    Liheng Zhong
    Le Yu
    Xuecao Li
    Lina Hu
    Peng Gong
    Scientific Reports, 6
  • [6] Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery
    Zhong, Liheng
    Gong, Peng
    Biging, Gregory S.
    REMOTE SENSING OF ENVIRONMENT, 2014, 140 : 1 - 13
  • [7] Corn nitrogen rate recommendation tools' performance across eight US midwest corn belt states
    Ransom, Curtis J.
    Kitchen, Newell R.
    Camberato, James J.
    Carter, Paul R.
    Ferguson, Richard B.
    Fernandez, Fabian G.
    Franzen, David W.
    Laboski, Carrie A. M.
    Nafziger, Emerson D.
    Sawyer, John E.
    Scharf, Peter C.
    Shanahan, John F.
    AGRONOMY JOURNAL, 2020, 112 (01) : 470 - 492
  • [8] Automated mapping of soybean and corn using phenology
    Zhong, Liheng
    Hu, Lina
    Yu, Le
    Gong, Peng
    Biging, Gregory S.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 119 : 151 - 164
  • [9] Using the Landsat archive to map crop cover history across the United States
    Johnson, David M.
    REMOTE SENSING OF ENVIRONMENT, 2019, 232
  • [10] Automated mapping of persistent ice and snow cover across the western US with Landsat
    Selkowitz, David J.
    Forster, Richard R.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 117 : 126 - 140