Performance of ultra-thin SOI-based resonators for sensing applications

被引:99
作者
Fard, Sahba Talebi [1 ]
Donzella, Valentina [1 ]
Schmidt, Shon A. [2 ]
Flueckiger, Jonas [1 ]
Grist, Samantha M. [1 ]
TalebiFard, Pouria [3 ]
Wu, Yichen [1 ]
Bojko, Rick J. [4 ]
Kwok, Ezra [5 ]
Jaeger, Nicolas A. F. [1 ]
Ratner, Daniel M. [2 ]
Chrostowski, Lukas [1 ]
机构
[1] Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC V6T 1Z4, Canada
[2] Univ Washington, Dept Bioengn, Seattle, WA 98195 USA
[3] Univ British Columbia, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada
[4] Univ Washington, Nanofabricat Facil, Seattle, WA 98195 USA
[5] Univ British Columbia, Dept Chem & Biol Engn, Vancouver, BC V6T 1Z3, Canada
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
LABEL-FREE; REFRACTIVE-INDEX; RING-RESONATOR; REAL-TIME; SILICON; TEMPERATURE; SENSITIVITY; WAVELENGTH; DEPENDENCE;
D O I
10.1364/OE.22.014166
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This work presents simulation and experimental results of ultra-thin optical ring resonators, having larger Evanescent Field (EF) penetration depths, and therefore larger sensitivities, as compared to conventional Silicon-on-Insulator (SOI)-based resonator sensors. Having higher sensitivities to the changes in the refractive indices of the cladding media is desirable for sensing applications, as the interactions of interest take place in this region. Using ultra-thin waveguides (< 100 nm thick) shows promise to enhance sensitivity for both bulk and surface sensing, due to increased penetration of the EF into the cladding. In this work, the designs and characterization of ultra-thin resonator sensors, within the constraints of a multi-project wafer service that offers three waveguide thicknesses (90 nm, 150 nm, and 220 nm), are presented. These services typically allow efficient integration of biosensors with on-chip detectors, moving towards the implementation of lab-on-chip (LoC) systems. Also, higher temperature stability of ultra-thin resonator sensors were characterized and, in the presence of intentional environmental (temperature) fluctuations, were compared to standard transverse electric SOI-based resonator sensors. (C)2014 Optical Society of America
引用
收藏
页码:14166 / 14179
页数:14
相关论文
共 36 条
[1]   TEMPERATURE-DEPENDENCE OF REFRACTIVE-INDEX OF WATER [J].
ABBATE, G ;
BERNINI, U ;
RAGOZZINO, E ;
SOMMA, F .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1978, 11 (08) :1167-1172
[2]   Defect-mediated resonance shift of silicon-on-insulator racetrack resonators [J].
Ackert, J. J. ;
Doylend, J. K. ;
Logan, D. F. ;
Jessop, P. E. ;
Vafaei, R. ;
Chrostowski, L. ;
Knights, A. P. .
OPTICS EXPRESS, 2011, 19 (13) :11969-11976
[3]   Silicon-on-Insulator Microring Resonator Sensor Integrated on an Optical Fiber Facet [J].
Arce, Cristina Lerma ;
De Vos, Katrien ;
Claes, Tom ;
Komorowska, Katarzyna ;
Van Thourhout, Dries ;
Bienstman, Peter .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2011, 23 (13) :890-892
[4]  
Bashkatov AN, 2002, P SOC PHOTO-OPT INS, V5068, P393
[5]  
Chrostowski L., 2012, P SOC PHOTO-OPT INS, V8236
[6]  
Chrostowski L., 2013, SILICON PHOTONICS DE
[7]  
Chrostowski L., 2014, P SPIE PHOTONICS W
[8]   Label-Free Biosensing With a Slot-Waveguide-Based Ring Resonator in Silicon on Insulator [J].
Claes, Tom ;
Girones Molera, Jordi ;
De Vos, Katrien ;
Schacht, Etienne ;
Baets, Roel ;
Bienstman, Peter .
IEEE PHOTONICS JOURNAL, 2009, 1 (03) :197-204
[9]   A silicon-on-insulator photonic wire based evanescent field sensor [J].
Densmore, A. ;
Xu, D. X. ;
Waldron, P. ;
Janz, S. ;
Cheben, P. ;
Lapointe, J. ;
Delage, A. ;
Lamontagne, B. ;
Schmid, J. H. ;
Post, E. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (21-24) :2520-2522
[10]   Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection [J].
Densmore, A. ;
Vachon, M. ;
Xu, D. -X. ;
Janz, S. ;
Ma, R. ;
Li, Y. -H. ;
Lopinski, G. ;
Delage, A. ;
Lapointe, J. ;
Luebbert, C. C. ;
Liu, Q. Y. ;
Cheben, P. ;
Schmid, J. H. .
OPTICS LETTERS, 2009, 34 (23) :3598-3600