LMI searches for anticausal and noncausal rational Zames-Falb multipliers

被引:31
作者
Carrasco, Joaquin [1 ]
Maya-Gonzalez, Martin [1 ]
Lanzon, Alexander [1 ]
Heath, William P. [1 ]
机构
[1] Univ Manchester, Sch Elect & Elect Engn, Control Syst Ctr, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Slope-restricted nonlinearities; Zames-Falb multipliers; Multiplier search; CAUSAL MULTIPLIERS; SYSTEMS; EXISTENCE; CRITERION;
D O I
10.1016/j.sysconle.2014.05.005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a linear time-invariant plant, the search for a suitable multiplier over the class of Zames-Falb multipliers is a challenging problem which has been studied for several decades. Recently, a new linear matrix inequality search has been proposed over rational and causal Zames-Falb multipliers. This letter analyzes the conservatism of the restriction to causality on the multipliers and presents a complementary search for rational and anticausal multipliers. The addition of a Popov multiplier to the anticausal Zames-Falb multiplier is implemented by analogy with the causal search. As a result, a search over a noncausal subset of Zames-Falb multipliers is obtained. A comparison between all the search methods proposed in the literature is given. (C) 2014 The Authors. Published by Elsevier B.V.
引用
收藏
页码:17 / 22
页数:6
相关论文
共 27 条
[1]  
BARABANOV NE, 1988, SIBERIAN MATH J+, V29, P333
[2]   Equivalence between classes of multipliers for slope-restricted nonlinearities [J].
Carrasco, Joaquin ;
Heath, William P. ;
Lanzon, Alexander .
AUTOMATICA, 2013, 49 (06) :1732-1740
[3]  
Carrasco J, 2012, IEEE DECIS CONTR P, P7770, DOI 10.1109/CDC.2012.6426868
[4]   Comments on "On the Existence of Stable, Causal Multipliers for Systems With Slope-Restricted Nonlinearities" [J].
Carrasco, Joaquin ;
Heath, William P. ;
Li, Guang ;
Lanzon, Alexander .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (09) :2422-2428
[5]   Computation of Zames-Falb Multipliers Revisited [J].
Chang, Michael ;
Mancera, Ricardo ;
Safonov, Michael .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (04) :1024-1029
[6]  
Chen X., 1996, J APPL MATH COMPUT S, V6, P625
[7]  
Chung-Yao Kao, 2004, 2004 IEEE International Symposium on Computer Aided Control Systems Design (IEEE Cat. No.04TH8770), P297, DOI 10.1109/CACSD.2004.1393892
[8]  
Desoer CA., 1975, FEEDBACK SYSTEMS INP
[9]   A CONVEX APPROACH TO THE ABSOLUTE STABILITY PROBLEM [J].
GAPSKI, PB ;
GEROMEL, JC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (09) :1929-1932
[10]   INTRINSIC DIFFICULTIES IN USING THE DOUBLY-INFINITE TIME AXIS FOR INPUT-OUTPUT CONTROL-THEORY [J].
GEORGIOU, TT ;
SMITH, MC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1995, 40 (03) :516-518