(1-uv)-CONSTACYCLIC CODES OVER Fp + uFp + vFp + uvFp

被引:0
作者
Yu Haifeng [1 ]
Zhu Shixin [2 ]
Kai Xiaoshan [2 ]
机构
[1] Hefei Univ, Dept Math & Phys, Hefei 230601, Peoples R China
[2] Hefei Univ Technol, Sch Math, Hefei 230009, Peoples R China
基金
中国国家自然科学基金;
关键词
Constacyclic code; cyclic code; gray map; quasi-cyclic code; CYCLIC CODES;
D O I
10.1007/s11424-014-3241-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Constacyclic codes are an important class of linear codes in coding theory. Many optimal linear codes are directly derived from constacyclic codes. In this paper, (1 - uv)-constacyclic codes over the local ring are studied. It is proved that the image of a (1 - uv)-constacyclic code of length n over under a Gray map is a distance invariant quasi-cyclic code of index p (2) and length p (3) n over . Several examples of optimal linear codes over from (1 - uv)-constacyclic codes over are given.
引用
收藏
页码:811 / 816
页数:6
相关论文
共 12 条
  • [1] Constacyclic codes over F2 + uF2
    Abualrub, Taher
    Siap, Irfan
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2009, 346 (05): : 520 - 529
  • [2] On (1-u)-cyclic codes over Fpk + uFpk
    Amarra, Maria Carmen V.
    Nemenzo, Fidel R.
    [J]. APPLIED MATHEMATICS LETTERS, 2008, 21 (11) : 1129 - 1133
  • [3] Cyclic and negacyclic codes over finite chain rings
    Dinh, HQ
    López-Permouth, SR
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1728 - 1744
  • [4] A family of constacyclic codes over F 2 + uF 2 + vF 2 + uvF 2
    Kai, Xiaoshan
    Zhu, Shixin
    Wang, Liqi
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2012, 25 (05) : 1032 - 1040
  • [5] (1+λu)-Constacyclic codes over Fp[u]/⟨um⟩
    Kai, Xiaoshan
    Zhu, Shixin
    Li, Ping
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2010, 347 (05): : 751 - 762
  • [6] (1+v)-Constacyclic codes over F2 + uF2 + vF2 + uvF2
    Karadeniz, Suat
    Yildiz, Bahattin
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2011, 348 (09): : 2625 - 2632
  • [7] Zpk+1-linear codes
    Ling, S
    Blackford, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (09) : 2592 - 2605
  • [8] Negacyclic and cyclic codes over Z4
    Wolfmann, J
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2527 - 2532
  • [9] Binary images of cyclic codes over Z4
    Wolfmann, J
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (05) : 1773 - 1779
  • [10] Yildiz B, 2011, DESIGN CODE CRYPTOGR, V58, P221, DOI 10.1007/s10623-010-9399-3