Integrable structure of Quantum Field Theory: classical flat connections versus quantum stationary states

被引:32
作者
Bazhanov, Vladimir V. [1 ,2 ]
Lukyanov, Sergei L. [3 ,4 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, Dept Theoret Phys, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
[3] Rutgers State Univ, NHETC, Dept Phys & Astron, Piscataway, NJ 08855 USA
[4] LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia
基金
澳大利亚研究理事会;
关键词
Field Theories in Lower Dimensions; Integrable Field Theories; Integrable Hierarchies; THERMODYNAMIC BETHE-ANSATZ; BOUNDARY INTERACTION; EQUATIONS; MODEL; SYMMETRY; FAMILY;
D O I
10.1007/JHEP09(2014)147
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We establish a correspondence between an infinite set of special solutions of the (classical) modified sinh-Gordon equation and a set of stationary states in the finite-volume Hilbert space of the integrable 2D QFT invented by V.A. Fateev. The modified sinh-Cordon equation arise in this case as a zero-curvature condition for a class of multivalued connections on the punctured Riemann sphere, similarly to Hitchin's self-duality equations. The proposed correspondence between the classical and quantum integrable systems provides a powerful tool for deriving functional and integral equations which determine the full spectrum of local integrals of motion for massive QFT in a finite volume. Potential applications of our results to the problem of non-perturbative quantization of classically integrable non-linear sigma models are briefly discussed.
引用
收藏
页数:69
相关论文
共 56 条
[1]   Thermodynamic bubble ansatz [J].
Alday, Luis F. ;
Gaiotto, Davide ;
Maldacena, Juan .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (09)
[2]   Y-system for scattering amplitudes [J].
Alday, Luis F. ;
Maldacena, Juan ;
Sever, Amit ;
Vieira, Pedro .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (48)
[3]   Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space [J].
Alday, Luis F. ;
Maldacena, Juan .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (11)
[4]  
[Anonymous], 1988, Adv. Stud. Pure Math
[5]  
[Anonymous], ARXIV09073987
[6]  
[Anonymous], 1989, ADV STUD PURE MATH, DOI DOI 10.2969/ASPM/01910641
[7]  
Baxter R.J., 1982, EXACTLY SOLVED MODEL, P502
[8]  
BAXTER RJ, 1971, STUD APPL MATH, V50, P51
[9]  
Bazhanov VV, 2003, ADV THEOR MATH PHYS, V7, P711
[10]  
Bazhanov V.V., SPECTRAL PR IN PRESS