PERIODIC SOLUTIONS FOR THE NON-LOCAL OPERATOR (-Δ plus m2)s - m2s WITH m ≥ 0

被引:18
作者
Ambrosio, Vincenzo [1 ]
机构
[1] Univ Naples Federico II, Dipartmento Matemat & Applicaz, Via Cinthia, I-80126 Naples, Italy
关键词
Nonlocal operators; linking theorem; periodic solutions; extension method; FRACTIONAL LAPLACIANS; NONLINEAR EQUATIONS; REGULARITY; EXISTENCE;
D O I
10.12775/TMNA.2016.063
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using variational methods, we investigate the existence of T-periodic solutions to {[(-Delta(x) + m(2))(s) - m(2s)]u = f(x, u) in (0, T)(N), u(x + Te-i) = u(x) for all x is an element of R-N, i = 1 , . . . ,N, where s is an element of(0, 1), N > 2s, T > 0, m >= 0 and f is a continuous function, T-periodic in the first variable, verifying the Ambrosetti-Rabinowitz condition, with a polynomial growth at rate p is an element of(1, (N 2s)/(N 2s)).
引用
收藏
页码:75 / 104
页数:30
相关论文
共 32 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
Ambrosio V, 2015, ADV NONLINEAR STUD, V15, P395
[4]  
[Anonymous], 2002, Trigonometric Series
[5]  
[Anonymous], 1990, Variational Methods: Applications to Non-linear Partial Differential Equations and Hamiltonian Systems
[6]  
[Anonymous], 1989, APPL MATH SCI
[7]  
Applebaum D., 2004, CAMBRIDGE STUD ADV M
[8]   The Sobolev inequality on the torus revisited [J].
Benyi, Arpad ;
Oh, Tadahiro .
PUBLICATIONES MATHEMATICAE DEBRECEN, 2013, 83 (03) :359-374
[9]   Critical nonlinearity exponent and self-similar asymptotics for Levy conservation laws [J].
Biler, P ;
Karch, G ;
Woyczynski, WA .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (05) :613-637
[10]   Layer solutions in a half-space for boundary reactions [J].
Cabré, X ;
Solà-Morales, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (12) :1678-1732