Asymptotic properties of the spectrum of neutral delay differential equations

被引:7
作者
Kyrychko, Y. N. [1 ]
Blyuss, K. B. [1 ]
Hoevel, P. [2 ]
Schoell, E. [2 ]
机构
[1] Univ Bristol, Dept Engn Math, Bristol BS8 1TR, Avon, England
[2] Tech Univ Berlin, Inst Theoret Phys, D-10623 Berlin, Germany
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2009年 / 24卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
neutral delay differential equations; stability; spectral properties; SELF-CONTROLLING FEEDBACK; UNSTABLE PERIODIC-ORBITS; CHARACTERISTIC ROOTS; DYNAMICAL-SYSTEMS; CONTROLLING CHAOS; DIODE RESONATOR; STABILITY; AUTOSYNCHRONIZATION; OSCILLATOR; MOTION;
D O I
10.1080/14689360902893285
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spectral properties and transition to instability in neutral delay differential equations are investigated in the limit of large delay. An approximation of the upper boundary of stability is found and compared to an analytically derived exact stability boundary. The approximate and exact stability borders agree quite well for the large time delay, and the inclusion of a time-delayed velocity feedback improves this agreement for small delays. Theoretical results are complemented by a numerically computed spectrum of the corresponding characteristic equations.
引用
收藏
页码:361 / 372
页数:12
相关论文
共 55 条
[1]   Some basic remarks on eigenmode expansions of time-delay dynamics [J].
Amann, Andreas ;
Schoell, Eckehard ;
Just, Wolfram .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 373 :191-202
[2]  
[Anonymous], 2008, Electron. J. Qual. Theory Differ. Equ.
[3]   Giant improvement of time-delayed feedback control by spatio-temporal filtering -: art. no. 074101 [J].
Baba, N ;
Amann, A ;
Schöll, E ;
Just, W .
PHYSICAL REVIEW LETTERS, 2002, 89 (07)
[4]   Bifurcation analysis of a neutral delay differential equation modelling the torsional motion of a driven drill-string [J].
Balanov, AG ;
Janson, NB ;
McClintock, PVE ;
Tucker, RW ;
Wang, CHT .
CHAOS SOLITONS & FRACTALS, 2003, 15 (02) :381-394
[5]   Homoclinic bifurcations in a neutral delay model of a transmission line oscillator [J].
Barton, David A. W. ;
Krauskopf, Bernd ;
Wilson, R. Eddie .
NONLINEARITY, 2007, 20 (04) :809-829
[6]   Comparison of time-delayed feedback schemes for spatiotemporal control of chaos in a reaction-diffusion system with global coupling -: art. no. 016213 [J].
Beck, O ;
Amann, A ;
Schöll, E ;
Socolar, JES ;
Just, W .
PHYSICAL REVIEW E, 2002, 66 (01)
[7]   CONTROLLING UNSTABLE PERIODIC-ORBITS BY A DELAYED CONTINUOUS FEEDBACK [J].
BIELAWSKI, S ;
DEROZIER, D ;
GLORIEUX, P .
PHYSICAL REVIEW E, 1994, 49 (02) :R971-R974
[8]   Experimental observation of delay-induced radio frequency chaos in a transmission line oscillator [J].
Blakely, JN ;
Corron, NJ .
CHAOS, 2004, 14 (04) :1035-1041
[9]   Structured population models, conservation laws, and delay equations [J].
Bocharov, G ;
Hadeler, KP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 168 (01) :212-237
[10]   Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions [J].
Breda, D ;
Maset, S ;
Vermiglio, R .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (3-4) :318-331