Mechanistic aspects of preheating effects of precursors on characteristics of Cu2ZnSnS4 (CZTS) thin films and solar cells

被引:15
作者
Long, Bo [1 ]
Cheng, Shuying [2 ,3 ]
Ye, Dapeng [1 ]
Yuc, Chuang [4 ]
Liao, Jie [5 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Mech & Elect Engn, Fuzhou 350002, Fujian, Peoples R China
[2] Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350108, Fujian, Peoples R China
[3] Fuzhou Univ, Inst Micronano Devices & Solar Cells, Fuzhou 350108, Fujian, Peoples R China
[4] Ningbo Univ, Sch Phys Sci & Technol, Ningbo 315211, Zhejiang, Peoples R China
[5] Fujian Normal Univ, Coll Chem & Mat Sci, Fuzhou 350117, Fujian, Peoples R China
关键词
Chalcognides; Inorganic compounds; Semiconductors; Sol-Gel chemistry; Thermogravimetric analysis; Raman spectroscopy; X-ray diffraction; Electrical properties; GEL SYNTHESIS; FABRICATION; EFFICIENCY; TEMPERATURE; QUALITY;
D O I
10.1016/j.materresbull.2019.03.027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
CZTS thin films are fabricated using sol-gel method following sulfurization. The material properties of the CZTS films which are prepared under different preheating temperatures and times are systematically investigated. The TGA-DTA analysis shows that the sulfides begin to be oxidized and the CZTS nanoparticles would be formed when the preheating temperature is above 300 degrees C. Moreover, with increasing the preheating temperature and time, the crystallinity of the CZTS thin films becomes stronger firstly and then weaker. Morphological characterizations show that the CZTS thin films deliver the best crystallinity under the preheating temperature of 250 degrees C for 5 min. The E-g, resistivity, carrier concentration, and mobility of the CZTS thin films is 1.45 eV, 3.56 Omega.cm, 2.47 x 10(17) cm(-3), 7.12 cm(2).V-1.s(-1), respectively. The solar cells with the efficiency of 1.51% is successfully configured.
引用
收藏
页码:182 / 190
页数:9
相关论文
共 43 条
  • [1] [Anonymous], MAT SCI SEMICOND PRO
  • [2] Ultrasonically assisted sol-gel synthesis of nanocrystalline Cu2ZnSnS4 particles for solar cell applications
    Chandel, Tarun
    Thakur, Vikas
    Zaman, M. Burhanuz
    Dwivedi, Shailendra Kumar
    Poolla, Rajaram
    [J]. MATERIALS LETTERS, 2018, 212 : 279 - 282
  • [3] Fabrication of Cu2ZnSnS4 thin films using oxides nanoparticles ink for solar cell
    Chen, Guilin
    Yuan, Chenchen
    Liu, Jiwan
    Huang, Zhigao
    Chen, Shuiyuan
    Liu, Weifeng
    Jiang, Guoshun
    Zhu, Changfei
    [J]. JOURNAL OF POWER SOURCES, 2015, 276 : 145 - 152
  • [4] Chen S., 2010, PHYS REV B, V82, P4706
  • [5] Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4
    Chen, Shiyou
    Gong, X. G.
    Walsh, Aron
    Wei, Su-Huai
    [J]. APPLIED PHYSICS LETTERS, 2010, 96 (02)
  • [6] PURITY AND HEAT OF FUSION DATA FOR ENVIRONMENTAL STANDARDS AS DETERMINED BY DIFFERENTIAL SCANNING CALORIMETRY
    DONNELLY, JR
    DREWES, LA
    JOHNSON, RL
    MUNSLOW, WD
    KNAPP, KK
    SOVOCOOL, GW
    [J]. THERMOCHIMICA ACTA, 1990, 167 (02) : 155 - 187
  • [7] Linearly arranged polytypic CZTSSe nanocrystals
    Fan, Feng-Jia
    Wu, Liang
    Gong, Ming
    Chen, Shi You
    Liu, Guang Yao
    Yao, Hong-Bin
    Liang, Hai-Wei
    Wang, Yi-Xiu
    Yu, Shu-Hong
    [J]. SCIENTIFIC REPORTS, 2012, 2
  • [8] Study of polycrystalline Cu2ZnSnS4 films by Raman scattering
    Fernandes, P. A.
    Salome, P. M. P.
    da Cunha, A. F.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (28) : 7600 - 7606
  • [9] Cu2ZnSnS4 thin film solar cells grown by fast thermal evaporation and thermal treatment
    Garcia-Llamas, E.
    Merino, J. M.
    Gunder, R.
    Neldner, K.
    Greiner, D.
    Steigert, A.
    Giraldo, S.
    Izquierdo-Roca, V.
    Saucedo, E.
    Leon, M.
    Schorr, S.
    Caballero, R.
    [J]. SOLAR ENERGY, 2017, 141 : 236 - 241
  • [10] Sol-gel synthesis of Cu2ZnSnS4 thin films under mild conditions
    Guo, Xinhua
    Han, Jiecai
    Zhang, Huayu
    Lv, Xinguang
    Yan, Jianwei
    Sun, Rui
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 697 : 361 - 366