Negative Impact of β-Arrestin-1 on Post-Myocardial Infarction Heart Failure via Cardiac and Adrenal-Dependent Neurohormonal Mechanisms

被引:89
作者
Bathgate-Siryk, Ashley [1 ]
Dabul, Samalia [1 ]
Pandya, Krunal [1 ]
Walklett, Karlee [1 ]
Rengo, Giuseppe [2 ]
Cannavo, Alessandro [2 ]
De Lucia, Claudio [2 ]
Liccardo, Daniela [2 ]
Gao, Erhe [3 ]
Leosco, Dario [2 ]
Koch, Walter J. [3 ]
Lymperopoulos, Anastasios [1 ]
机构
[1] Nova SE Univ, Coll Pharm, Dept Pharmaceut Sci, Lab Study Neurohormonal Control Circulat, Ft Lauderdale, FL 33328 USA
[2] Univ Naples Federico II, Dept Translat Med Sci, Naples, Italy
[3] Temple Univ, Ctr Translat Med, Philadelphia, PA 19122 USA
基金
美国国家卫生研究院;
关键词
beta-arrestin-1; aldosterone; catecholamines; knockout mice; COUPLED RECEPTOR KINASES; BETA-ARRESTIN; IN-VIVO; ALDOSTERONE PRODUCTION; THERAPEUTIC TARGETS; GRK2; ACTIVATION; INHIBITION; DISEASE; ADRENOCEPTORS;
D O I
10.1161/HYPERTENSIONAHA.113.02043
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
beta-Arrestin (beta arr)-1 and beta-arrestin-2 (beta arrs) are universal G-protein-coupled receptor adapter proteins that negatively regulate cardiac beta-adrenergic receptor (beta AR) function via beta AR desensitization and downregulation. In addition, they mediate G-protein-independent beta AR signaling, which might be beneficial, for example, antiapoptotic, for the heart. However, the specific role(s) of each beta arr isoform in cardiac beta AR dysfunction, the molecular hallmark of chronic heart failure (HF), remains unknown. Furthermore, adrenal beta arr1 exacerbates HF by chronically enhancing adrenal production and hence circulating levels of aldosterone and catecholamines. Herein, we sought to delineate specific roles of beta arr1 in post-myocardial infarction (MI) HF by testing the effects of beta arr1 genetic deletion on normal and post-MI cardiac function and morphology. We studied beta arr1 knockout (beta arr1KO) mice alongside wild-type controls under normal conditions and after surgical MI. Normal (sham-operated) beta arr1KO mice display enhanced beta AR-dependent contractility and post-MI beta arr1KO mice enhanced overall cardiac function (and beta AR-dependent contractility) compared with wild type. Post-MI beta arr1KO mice also show increased survival and decreased cardiac infarct size, apoptosis, and adverse remodeling, as well as circulating catecholamines and aldosterone, compared with post-MI wild type. The underlying mechanisms, on one hand, improved cardiac beta AR signaling and function, as evidenced by increased beta AR density and procontractile signaling, via reduced cardiac beta AR desensitization because of cardiac beta arr1 absence, and, on the other hand, decreased production leading to lower circulating levels of catecholamines and aldosterone because of adrenal beta arr1 absence. Thus, beta arr1, via both cardiac and adrenal effects, is detrimental for cardiac structure and function and significantly exacerbates post-MI HF.
引用
收藏
页码:404 / +
页数:18
相关论文
共 44 条
  • [1] G Protein Coupled Receptor Kinases as Therapeutic Targets in Cardiovascular Disease
    Belmonte, Stephen L.
    Blaxall, Burns C.
    [J]. CIRCULATION RESEARCH, 2011, 109 (03) : 309 - 319
  • [2] Calcium cycling and signaling in cardiac myocytes
    Bers, Donald M.
    [J]. ANNUAL REVIEW OF PHYSIOLOGY, 2008, 70 : 23 - 49
  • [3] BETA-1-ADRENERGIC-RECEPTOR AND BETA-2-ADRENERGIC-RECEPTOR SUBPOPULATIONS IN NONFAILING AND FAILING HUMAN VENTRICULAR MYOCARDIUM - COUPLING OF BOTH RECEPTOR SUBTYPES TO MUSCLE-CONTRACTION AND SELECTIVE BETA-1-RECEPTOR DOWN-REGULATION IN HEART-FAILURE-
    BRISTOW, MR
    GINSBURG, R
    UMANS, V
    FOWLER, M
    MINOBE, W
    RASMUSSEN, R
    ZERA, P
    MENLOVE, R
    SHAH, P
    JAMIESON, S
    STINSON, EB
    [J]. CIRCULATION RESEARCH, 1986, 59 (03) : 297 - 309
  • [4] DECREASED CATECHOLAMINE SENSITIVITY AND BETA-ADRENERGIC-RECEPTOR DENSITY IN FAILING HUMAN HEARTS
    BRISTOW, MR
    GINSBURG, R
    MINOBE, W
    CUBICCIOTTI, RS
    SAGEMAN, WS
    LURIE, K
    BILLINGHAM, ME
    HARRISON, DC
    STINSON, EB
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 1982, 307 (04) : 205 - 211
  • [5] BETA-ADRENOCEPTORS IN CARDIAC DISEASE
    BRODDE, OE
    [J]. PHARMACOLOGY & THERAPEUTICS, 1993, 60 (03) : 405 - 430
  • [6] Conner DA, 1997, CIRC RES, V81, P1021
  • [7] β-arrestins and cell signaling
    DeWire, Scott M.
    Ahn, Seungkirl
    Lefkowitz, Robert J.
    Shenoy, Sudha K.
    [J]. ANNUAL REVIEW OF PHYSIOLOGY, 2007, 69 : 483 - 510
  • [8] A transgenic mouse model of heart failure using inducible Gαq
    Fan, GF
    Jiang, YP
    Lu, ZJ
    Martin, DW
    Kelly, DJ
    Zuckerman, JM
    Ballou, LM
    Cohen, IS
    Lin, RZ
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (48) : 40337 - 40346
  • [9] Hsp72 preserves muscle function and slows progression of severe muscular dystrophy
    Gehrig, Stefan M.
    van der Poel, Chris
    Sayer, Timothy A.
    Schertzer, Jonathan D.
    Henstridge, Darren C.
    Church, Jarrod E.
    Lamon, Severine
    Russell, Aaron P.
    Davies, Kay E.
    Febbraio, Mark A.
    Lynch, Gordon S.
    [J]. NATURE, 2012, 484 (7394) : 394 - 398
  • [10] Superoxide scavenging and Akt inhibition in myocardium ameliorate pressure overload-induced NF-κB activation and cardiac hypertrophy
    Hingtgen, Shawn D.
    Li, Zhenbo
    Kutschke, William
    Tian, Xin
    Sharma, Ram V.
    Davisson, Robin L.
    [J]. PHYSIOLOGICAL GENOMICS, 2010, 41 (02) : 127 - 136