Graft Modification of Starch Nanoparticles Using Nitroxide-Mediated Polymerization and the "Grafting to" Approach

被引:13
作者
Cazotti, Jaime C. [1 ]
Fritz, Alexander T. [1 ]
Garcia-Valdez, Omar [1 ]
Smeets, Niels M. B. [2 ]
Dube, Marc A. [3 ]
Cunningham, Michael F. [1 ]
机构
[1] Queens Univ, Dept Chem Engn, Kingston, ON K7L 3N6, Canada
[2] EcoSynthetix Inc, Burlington, ON L7M 1A6, Canada
[3] Univ Ottawa, Ctr Catalysis Res & Innovat, Dept Chem & Biol Engn, Ottawa, ON K1N 6N5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Grafting (chemical) - Starch - Esters - Acrylic monomers - Nanoparticles - Synthetic polymers - Polymerization;
D O I
10.1021/acs.biomac.0c00462
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Starch nanoparticles (SNP) were modified with synthetic polymers using the "grafting to" approach and nitroxide-mediated polymerization. SG1-capped poly(methyl methacrylate-co-styrene) (P(MMA-co-S)) copolymers with low dispersity and high degree of livingness were first synthesized in bulk. These macro-alkoxyamines were then grafted to vinyl benzyl-functionalized SNP to obtain biosynthetic hybrids. The grafted materials, SNP-g-P(MMA-co-S), were characterized by H-1 NMR, FTIR, TGA, and elemental analysis. The total amount of grafted polymer and the grafting efficiency were evaluated for different molecular weights (5870-12150 g-mol(-1)) of the grafted polymer, the polymer addition approach (batch or semibatch) and the initial polymer loading (2.5, 5, or 10 g polymer/g SNP). The proposed approach presented in this work to graft modify SNP allows for a precise surface modification of the nanoparticles, while permitting that the final properties of the resulting biohybrid to be tunable according to the choice of polymer grafted.
引用
收藏
页码:4492 / 4501
页数:10
相关论文
共 40 条
[1]   Amphiphilic Amylose-g-poly(meth)acrylate Copolymers through "Click" onto Grafting Method [J].
Bertoldo, Monica ;
Zampano, Giovanni ;
La Terra, Federico ;
Villari, Valentina ;
Castelvetro, Valter .
BIOMACROMOLECULES, 2011, 12 (02) :388-398
[2]   Characterization of an amylose-graft-poly(n-butyl methacrylate) copolymer obtained by click chemistry by EPR and SS-NMR spectroscopies [J].
Borsacchi, Silvia ;
Calucci, Lucia ;
Geppi, Marco ;
La Terra, Federico ;
Pinzino, Calogero ;
Bertoldo, Monica .
CARBOHYDRATE POLYMERS, 2014, 112 :245-254
[3]   Cationic polymer grafted starch from nonsymmetrically substituted macroinitiators [J].
Bruzzano, S ;
Sieverling, N ;
Wieland, C ;
Jaeger, W ;
Thünemann, AF ;
Springer, J .
MACROMOLECULES, 2005, 38 (17) :7251-7261
[4]   Graft modification of starch nanoparticles using nitroxide-mediated polymerization and the grafting from approach [J].
Cazotti, Jaime C. ;
Fritz, Alexander T. ;
Garcia-Valdez, Omar ;
Smeets, Niels M. B. ;
Dube, Marc A. ;
Cunningham, Michael F. .
CARBOHYDRATE POLYMERS, 2020, 228
[5]   Grafting from Starch Nanoparticles with Synthetic Polymers via Nitroxide-Mediated Polymerization [J].
Cazotti, Jaime C. ;
Fritz, Alexander T. ;
Garcia-Valdez, Omar ;
Smeets, Niels M. B. ;
Dube, Marc A. ;
Cunningham, Michael F. .
MACROMOLECULAR RAPID COMMUNICATIONS, 2019, 40 (10)
[6]   Enzyme-catalyzed regioselective modification of starch nanoparticles [J].
Chakraborty, S ;
Sahoo, B ;
Teraoka, I ;
Miller, LM ;
Gross, RA .
MACROMOLECULES, 2005, 38 (01) :61-68
[7]   Recent progress in chemical modification of starch and its applications [J].
Chen, Qing ;
Yu, Haojie ;
Wang, Li ;
ul Abdin, Zain ;
Chen, Yongsheng ;
Wang, Junhua ;
Zhou, Weidong ;
Yang, Xianpeng ;
Khan, Rizwan Ullah ;
Zhang, Hongtao ;
Chen, Xiao .
RSC ADVANCES, 2015, 5 (83) :67459-67474
[8]  
Chiu CW, 2009, FOOD SCI TECHNOL-INT, P629, DOI 10.1016/B978-0-12-746275-2.00017-3
[9]   Synthesis and characterization of starch-g-polycaprolactone copolymer [J].
Choi, EJ ;
Kim, CH ;
Park, JK .
MACROMOLECULES, 1999, 32 (22) :7402-7408
[10]   PEGylation of Chitosan Via Nitroxide-Mediated Polymerization in Aqueous Media [J].
Darabi, Ali ;
Garcia-Valdez, Omar ;
Champagne, Pascale ;
Cunningham, Michael F. .
MACROMOLECULAR REACTION ENGINEERING, 2016, 10 (01) :82-89