Some remarks on domination

被引:62
作者
Archdeacon, D [1 ]
Ellis-Monaghan, J
Fisher, D
Froncek, D
Lam, PCB
Seager, S
Wei, B
Yuster, R
机构
[1] Univ Vermont, Dept Math & Stat, Burlington, VT 05405 USA
[2] St Michaels Coll, Dept Math, Colchester, VT 05439 USA
[3] Univ Colorado, Dept Math, Denver, CO 80217 USA
[4] Univ Minnesota, Dept Math & Stat, Duluth, MN 55812 USA
[5] Tech Univ Ostrava, CS-70833 Ostrava, Czech Republic
[6] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
[7] Mt St Vincent Univ, Dept Math, Halifax, NS B3M 2J2, Canada
关键词
total domination; bipartite domination; transversals in hypergraphs;
D O I
10.1002/jgt.20000
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a conjecture of Favaron et al. that every graph of order n and minimum degree at least three has a total dominating set of size at least n/2. We also present several related results about: (1) extentions to graphs of minimum degree two, (2) examining graphs where the bound is tight, and (3) a type of bipartite domination and its relation to transversals in hypergraphs. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:207 / 210
页数:4
相关论文
共 7 条
[1]   SMALL TRANSVERSALS IN HYPERGRAPHS [J].
CHVATAL, V ;
MCDIARMID, C .
COMBINATORICA, 1992, 12 (01) :19-26
[2]  
Favaron O, 2000, J GRAPH THEOR, V34, P9, DOI 10.1002/(SICI)1097-0118(200005)34:1<9::AID-JGT2>3.0.CO
[3]  
2-O
[4]  
FISHER D, UNPUB TOTAL DOMINATI
[5]  
FLAM PCB, UNPUB TOTAL DOMINATI
[6]  
THOMASSE S, TOTAL DOMINATION GRA
[7]  
YUSTER R, UNPUB GRAPHS MINIMUM