Atmospheric methane and nitrous oxide: challenges alongthe path to Net Zero

被引:30
作者
Nisbet, Euan G. [1 ,5 ]
Dlugokencky, Edward J. [2 ]
Fisher, Rebecca E. [1 ]
France, James L. [1 ,6 ]
Lowry, David [1 ]
Manning, Martin R. [3 ]
Michel, Sylvia E. [4 ]
Warwick, Nicola J. [5 ]
机构
[1] Univ London, Royal Holloway, Dept Earth Sci, Egham TW20 0EX, England
[2] US Natl Ocean & Atmospher Adm, Global Monitoring Lab, 325 Broadway, Boulder, CO 80305 USA
[3] Victoria Univ Wellington, New Zealand Climate Change Res Inst, Sch Geog Environm & Earth Studies, Wellington, New Zealand
[4] Univ Colorado, Inst Arctic & Antarctic Res, Boulder, CO 80309 USA
[5] Univ Cambridge, Dept Chem, NCAS, Lensfield Rd, Cambridge CB2 1EW, England
[6] NERC, British Antarctic Survey, Cambridge CB3 0ET, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2021年 / 379卷 / 2210期
基金
英国自然环境研究理事会;
关键词
atmospheric methane growth; nitrous oxide growth; FOSSIL-FUEL; OFFSHORE OIL; EMISSIONS; GAS; CLIMATE; OXIDATION; BUDGET; MODEL; CH4; QUANTIFICATION;
D O I
10.1098/rsta.2020.0457
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The causes of methane's renewed rise since 2007, accelerated growth from 2014 and record rise in 2020, concurrent with an isotopic shift to values more depleted in C-13, remain poorly understood. This rise is the dominant departure from greenhouse gas scenarios that limit global heating to less than 2 degrees C. Thus a comprehensive understanding of methane sources and sinks, their trends and inter-annual variations are becoming more urgent. Efforts to quantify both sources and sinks and understand latitudinal and seasonal variations will improve our understanding of the methane cycle and its anthropogenic component. Nationally declared emissions inventories under the UN Framework Convention on Climate Change (UNFCCC) and promised contributions to emissions reductions under the UNFCCC Paris Agreement need to be verified independently by top-down observation. Furthermore, indirect effects on natural emissions, such as changes in aquatic ecosystems, also need to be quantified. Nitrous oxide is even more poorly understood. Despite this, options for mitigating methane and nitrous oxide emissions are improving rapidly, both in cutting emissions from gas, oil and coal extraction and use, and also from agricultural and waste sources. Reductions in methane and nitrous oxide emission are arguably among the most attractive immediate options for climate action.This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.
引用
收藏
页数:24
相关论文
共 144 条
[1]   Methane removal and the proportional reductions in surface temperature and ozone [J].
Abernethy, S. ;
O'Connor, F. M. ;
Jones, C. D. ;
Jackson, R. B. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 379 (2210)
[2]  
Alemneh T., 2019, Int J Ecol Ecosolution, V6, P16
[3]  
[Anonymous], 2021, Methane Tracker 2021
[4]   Quantification of methane emissions from UK biogas plants [J].
Bakkaloglu, Semra ;
Lowry, Dave ;
Fisher, Rebecca E. ;
France, James L. ;
Brunner, Dominik ;
Chen, Huilin ;
Nisbet, Euan G. .
WASTE MANAGEMENT, 2021, 124 :82-93
[5]   High-resolution interpolar difference of atmospheric methane around the Last Glacial Maximum [J].
Baumgartner, M. ;
Schilt, A. ;
Eicher, O. ;
Schmitt, J. ;
Schwander, J. ;
Spahni, R. ;
Fischer, H. ;
Stocker, T. F. .
BIOGEOSCIENCES, 2012, 9 (10) :3961-3977
[6]   Towards an online mitigation strategy for N2O emissions through principal components analysis and clustering techniques [J].
Bellandi, Giacomo ;
Weijers, Stefan ;
Gori, Riccardo ;
Nopens, Ingmar .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 261
[7]   Using ship-borne observations of methane isotopic ratio in the Arctic Ocean to understand methane sources in the Arctic [J].
Berchet, Antoine ;
Pison, Isabelle ;
Crill, Patrick M. ;
Thornton, Brett ;
Bousquet, Philippe ;
Thonat, Thibaud ;
Hocking, Thomas ;
Thanwerdas, Joel ;
Paris, Jean-Daniel ;
Saunois, Marielle .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (06) :3987-3998
[8]   Inverse modelling of European CH4 emissions during 2006-2012 using different inverse models and reassessed atmospheric observations [J].
Bergamaschi, Peter ;
Karstens, Ute ;
Manning, Alistair J. ;
Saunois, Marielle ;
Tsuruta, Aki ;
Berchet, Antoine ;
Vermeulen, Alexander T. ;
Arnold, Tim ;
Janssens-Maenhout, Greet ;
Hammer, Samuel ;
Levin, Ingeborg ;
Schmidt, Martina ;
Ramonet, Michel ;
Lopez, Morgan ;
Lavric, Jost ;
Aalto, Tuula ;
Chen, Huilin ;
Feist, Dietrich G. ;
Gerbig, Christoph ;
Haszpra, Laszlo ;
Hermansen, Ove ;
Manca, Giovanni ;
Moncrieff, John ;
Meinhardt, Frank ;
Necki, Jaroslaw ;
Galkowski, Michal ;
O'Doherty, Simon ;
Paramonova, Nina ;
Scheeren, Hubertus A. ;
Steinbacher, Martin ;
Dlugokencky, Ed .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2018, 18 (02) :901-920
[9]   Methane mole fraction and δ13C above and below the trade wind inversion at Ascension Island in air sampled by aerial robotics [J].
Brownlow, R. ;
Lowry, D. ;
Thomas, R. M. ;
Fisher, R. E. ;
France, J. L. ;
Cain, M. ;
Richardson, T. S. ;
Greatwood, C. ;
Freer, J. ;
Pyle, J. A. ;
MacKenzie, A. R. ;
Nisbet, E. G. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (22) :11893-11902
[10]   CARBON KINETIC ISOTOPE EFFECT IN THE OXIDATION OF METHANE BY THE HYDROXYL RADICAL [J].
CANTRELL, CA ;
SHETTER, RE ;
MCDANIEL, AH ;
CALVERT, JG ;
DAVIDSON, JA ;
LOWE, DC ;
TYLER, SC ;
CICERONE, RJ ;
GREENBERG, JP .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1990, 95 (D13) :22455-22462