The full group of automorphisms of non-orientable unbordered Klein surfaces of topological genus 3, 4 and 5

被引:13
作者
Bujalance, E. [1 ]
Etayo, J. J. [2 ]
Martinez, E. [1 ]
机构
[1] UNED, Dept Matemat Fundamentales, Madrid 28040, Spain
[2] Univ Complutense, Fac Matemat, Dept Algebra, E-28040 Madrid, Spain
来源
REVISTA MATEMATICA COMPLUTENSE | 2014年 / 27卷 / 01期
关键词
Non-orientable surface; Klein surface; Automorphism group; Symmetric crosscap number;
D O I
10.1007/s13163-013-0121-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An important problem in the study of Riemann and Klein surfaces is determining their full automorphism groups. Up to now only very partial results are known, concerning surfaces of low genus or families of surfaces with special properties. This paper deals with non-orientable unbordered Klein surfaces. In this case the solution of the problem is known for surfaces of genus 1 and 2, and for hyperelliptic surfaces. Here we explicitly obtain the full automorphism group of all surfaces of genus 3, 4 and 5.
引用
收藏
页码:305 / 326
页数:22
相关论文
共 27 条
[1]  
Alling N.L., 1971, Lecture Notes in Math., V219
[2]  
BUJALANCE E, 1990, LECT NOTES MATH, V1439, pR5
[3]  
BUJALANCE E, 1989, LECT NOTES MATH, V1398, P43
[5]   On extendability of group actions on compact Riemann surfaces [J].
Bujalance, E ;
Cirre, FJ ;
Conder, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (04) :1537-1557
[6]   Finite group actions on bordered surfaces of small genus [J].
Bujalance, E. ;
Cirre, F. J. ;
Conder, M. D. E. ;
Szepietowski, B. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (12) :2165-2185
[7]   NORMAL NEC SIGNATURES [J].
BUJALANCE, E .
ILLINOIS JOURNAL OF MATHEMATICS, 1982, 26 (03) :519-530
[8]  
Bujalance E., T AM MATH S IN PRESS
[9]   Determination of all regular maps of small genus [J].
Conder, M ;
Dobcsányi, P .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 81 (02) :224-242
[10]  
Coxeter HSM, 1939, T AM MATH SOC, V45, P73