Bifurcations of travelling wave solutions in variant Boussinesq equations

被引:4
|
作者
Yuan, YB [1 ]
Pu, DM
Li, SM
机构
[1] Univ Elect Sci & Technol, Sch Appl Math, Chengdu 610054, Peoples R China
[2] Univ Sci & Technol Kunming, Sch Sci, Kunming 650093, Peoples R China
关键词
Hamiltonian system; Boussinesq equations; bifurcation; solitary waves solutions; kink waves solutions;
D O I
10.1007/s10483-006-0612-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The bifurcations of solitary waves and kink waves for variant Boussinesq equations axe studied by using the bifurcation theory of planar dynamical systems. The bifurcation sets and the numbers of solitary waves and kink waves for the variant Boussinesq equations axe presented. Several types explicit formulas of solitary waves solutions and kink waves solutions are obtained. In the end, several formulas of periodic wave solutions are presented.
引用
收藏
页码:811 / 822
页数:12
相关论文
共 50 条
  • [21] Exact Travelling Wave Solutions of a Variety of Boussinesq-Like Equations
    Lee, Jonu
    Sakthivel, Rathinasamy
    CHINESE JOURNAL OF PHYSICS, 2014, 52 (03) : 939 - 957
  • [22] New explicit travelling wave solutions of nonlinearly dispersive Boussinesq equations
    Gao, Liang
    Xu, Wei
    Shen, Jianwel
    Tang, Yarling
    CHAOS SOLITONS & FRACTALS, 2008, 36 (04) : 940 - 945
  • [23] New travelling wave solutions to the Boussinesq and the Klein-Gordon equations
    Wazwaz, Abdul-Majid
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (05) : 889 - 901
  • [24] Bifurcations of travelling wave solutions for generalized Drinfeld-Sokolov equations
    Long Yao
    Rui Wei-guo
    He Bin
    Chen Can
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2006, 27 (11) : 1549 - 1555
  • [25] Dynamics and bifurcations of travelling wave solutions of R(m, n) equations
    Feng, Dahe
    Li, Jibin
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2007, 117 (04): : 555 - 574
  • [26] Dynamics and bifurcations of travelling wave solutions of R(m, n) equations
    Dahe Feng
    Jibin Li
    Proceedings Mathematical Sciences, 2007, 117 : 555 - 574
  • [27] BIFURCATIONS OF TRAVELLING WAVE SOLUTIONS FOR GENERALIZED DRINFELD-SOKOLOV EQUATIONS
    龙瑶
    芮伟国
    何斌
    陈灿
    AppliedMathematicsandMechanics(EnglishEdition), 2006, (11) : 1549 - 1555
  • [28] Bifurcations of travelling wave solutions for generalized Drinfeld-Sokolov equations
    Yao Long
    Wei-guo Rui
    Bin He
    Can Chen
    Applied Mathematics and Mechanics, 2006, 27 : 1549 - 1555
  • [29] All traveling wave exact solutions of the variant Boussinesq equations
    Yuan, Wenjun
    Meng, Fanning
    Huang, Yong
    Wu, Yonghong
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 865 - 872
  • [30] Bifurcations of travelling wave solutions for (2+1)-dimensional Boussinesq-type equation
    Feng, Dahe
    He, Tianlan
    Lu, Junliang
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (01) : 402 - 414