N-Doped graphitic ladder-structured carbon nanotubes as a superior sulfur host for lithium-sulfur batteries

被引:15
作者
Luo, Rui [1 ,2 ]
Xi, Baojuan [1 ,2 ]
Wei, Ruchao [1 ,2 ]
Chen, Weihua [3 ]
Ma, Xiaojian [1 ,2 ]
Feng, Zhenyu [1 ,2 ]
Feng, Jinkui [4 ]
Xiong, Shenglin [1 ,2 ]
机构
[1] Shandong Univ, Key Lab Colloid & Interface Chem, Minist Educ, Sch Chem & Chem Engn, Jinan 250100, Peoples R China
[2] Shandong Univ, State Key Lab Crystal Mat, Jinan 250100, Peoples R China
[3] Zhengzhou Univ, Key Lab Mat Proc & Mold, Minist Educ, Zhengzhou 450001, Peoples R China
[4] Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Peoples R China
基金
中国国家自然科学基金;
关键词
POROUS CARBON; SELF-DISCHARGE; GRAPHENE; CAPACITY; COBALT; PERFORMANCE; CATHODE; POLYSULFIDES; MEMBRANE; KINETICS;
D O I
10.1039/d0qi00678e
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Lithium-sulfur (Li-S) batteries have been becoming a new generation of secondary batteries due to their high theoretical energy density. Regarding sulfur-based cathodes, they not only help to strengthen the utilization of sulfur, but also effectively immobilize polysulfides to alleviate their dissolution and diffusion. Herein, a new confinement strategy is initiated by a distinctive sulfur scaffold, namely nitrogen doped graphitic ladder-structured carbon nanotubes (NGLCNTs) loaded with appropriate amount of metallic cobalt nanoparticles. Benefiting from both the unique graphitic ladder-structure and metallic cobalt nanoparticles in the nitrogen doped carbon nanotubes, the NGLCNTs host not only promotes ion transfer and electron transmission during the redox reactions from higher-order polysulfides to Li2S2/Li2S, but also efficiently restricts the outward diffusion and dissolution of polysulfides as well as benefits the nucleation and growth of Li2S. As a result, the NGLCNTs/S cathode has successfully overcome the crucial issues, and it exhibits greatly enhanced electrochemical performances with excellent rate capabilities of up to 8C and long term cycling life of over 500 cycles.
引用
收藏
页码:3969 / 3979
页数:11
相关论文
共 58 条
[1]   An Advanced Lithium-Ion Sulfur Battery for High Energy Storage [J].
Agostini, Marco ;
Scrosati, Bruno ;
Hassoun, Jusef .
ADVANCED ENERGY MATERIALS, 2015, 5 (16)
[2]   Transition Metal Dichalcogenide Atomic Layers for Lithium Polysulfides Electrocatalysis [J].
Babu, Ganguli ;
Masurkar, Nirul ;
Al Salem, Hesham ;
Arave, Leela Mohana Reddy .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (01) :171-178
[3]   Self-assembled CdS quantum dots in carbon nanotubes: induced polysulfide trapping and redox kinetics enhancement for improved lithium-sulfur battery performance [J].
Cai, Dong ;
Wang, Lili ;
Li, La ;
Zhang, Yupu ;
Li, Junzhi ;
Chen, Duo ;
Tu, Haoran ;
Han, Wei .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (02) :806-815
[4]   Self-Templated Formation of Interlaced Carbon Nanotubes Threaded Hollow Co3S4 Nanoboxes for High-Rate and Heat-Resistant Lithium-Sulfur Batteries [J].
Chen, Tao ;
Zhang, Zewen ;
Cheng, Baorui ;
Chen, Renpeng ;
Hu, Yi ;
Ma, Lianbo ;
Zhu, Guoyin ;
Liu, Jie ;
Jin, Zhong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (36) :12710-12715
[5]   Highly Efficient Retention of Polysulfides in "Sea Urchin"-Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium-Sulfur Batteries [J].
Chen, Tao ;
Cheng, Baorui ;
Zhu, Guoyin ;
Chen, Renpeng ;
Hu, Yi ;
Ma, Lianbo ;
Lv, Hongling ;
Wang, Yanrong ;
Liang, Jia ;
Tie, Zuoxiu ;
Jin, Zhong ;
Liu, Jie .
NANO LETTERS, 2017, 17 (01) :437-444
[6]   Recent progress in polymer/sulphur composites as cathodes for rechargeable lithium-sulphur batteries [J].
Cheng, Hong ;
Wang, Shengping .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (34) :13783-13794
[7]   Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery: Modeling and Analysis of Capacity Fading [J].
Deng, Zhaofeng ;
Zhang, Zhian ;
Lai, Yanqing ;
Liu, Jin ;
Li, Jie ;
Liu, Yexiang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (04) :A553-A558
[8]   Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries [J].
Du, Zhenzhen ;
Chen, Xingjia ;
Hu, Wei ;
Chuang, Chenghao ;
Xie, Shuai ;
Hu, Ajuan ;
Yan, Wensheng ;
Kong, Xianghua ;
Wu, Xiaojun ;
Ji, Hengxing ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (09) :3977-3985
[9]   Mechanism and Kinetics of Li2S Precipitation in Lithium-Sulfur Batteries [J].
Fan, Frank Y. ;
Carter, W. Craig ;
Chiang, Yet-Ming .
ADVANCED MATERIALS, 2015, 27 (35) :5203-5209
[10]   More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects [J].
Fang, Ruopian ;
Zhao, Shiyong ;
Sun, Zhenhua ;
Wang, Wei ;
Cheng, Hui-Ming ;
Li, Feng .
ADVANCED MATERIALS, 2017, 29 (48)