Accelerating Tomato Breeding by Exploiting Genomic Selection Approaches

被引:26
作者
Cappetta, Elisa [1 ]
Andolfo, Giuseppe [1 ]
Di Matteo, Antonio [1 ]
Barone, Amalia [1 ]
Frusciante, Luigi [1 ]
Ercolano, Maria Raffaella [1 ]
机构
[1] Univ Naples Federico II, Dept Agr Sci, Via Univ 100, I-80055 Naples, Italy
来源
PLANTS-BASEL | 2020年 / 9卷 / 09期
关键词
tomato; genetic breeding value; training population; genotyping; marker effect; phenotyping; selection schemes; MARKER-ASSISTED SELECTION; FRUIT-QUALITY TRAITS; PREDICTION ACCURACY; DISEASE RESISTANCE; POPULATION DESIGN; CULTIVATED TOMATO; PLANT; IMPROVEMENT; DIVERSITY; REGRESSION;
D O I
10.3390/plants9091236
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Genomic selection (GS) is a predictive approach that was built up to increase the rate of genetic gainperunit of time and reduce the generation interval by utilizing genome-wide markers in breeding programs. It has emerged as a valuable method for improving complex traits that are controlled by many genes with small effects. GS enables the prediction of the breeding value of candidate genotypes for selection. In this work, we address important issues related to GS and its implementation in the plant context with special emphasis on tomato breeding. Genomic constraints and critical parameters affecting the accuracy of prediction such as the number of markers, statistical model, phenotyping and complexity of trait, training population size and composition should be carefully evaluated. The comparison of GS approaches for facilitating the selection of tomato superior genotypes during breeding programs is also discussed. GS applied to tomato breeding has already been shown to be feasible. We illustrated how GS can improve the rate of gain in elite line selection, and descendent and backcross schemes. The GS schemes have begun to be delineated and computer science can provide support for future selection strategies. A new promising breeding framework is beginning to emerge for optimizing tomato improvement procedures.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 98 条
[1]   Development of Transcriptomic Markers for Population Analysis Using Restriction Site Associated RNA Sequencing (RARseq) [J].
Alabady, Magdy S. ;
Rogers, Willie L. ;
Malmberg, Russell L. .
PLOS ONE, 2015, 10 (08)
[2]   Genome-wide identification and analysis of candidate genes for disease resistance in tomato [J].
Andolfo, G. ;
Sanseverino, W. ;
Aversano, R. ;
Frusciante, L. ;
Ercolano, M. R. .
MOLECULAR BREEDING, 2014, 33 (01) :227-233
[3]   Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq [J].
Andolfo, Giuseppe ;
Jupe, Florian ;
Witek, Kamil ;
Etherington, Graham J. ;
Ercolano, Maria R. ;
Jones, Jonathan D. G. .
BMC PLANT BIOLOGY, 2014, 14
[4]   Single Primer Enrichment Technology (SPET) for High-Throughput Genotyping in Tomato and Eggplant Germplasm [J].
Barchi, Lorenzo ;
Acquadro, Alberto ;
Alonso, David ;
Aprea, Giuseppe ;
Bassolino, Laura ;
Demurtas, Olivia ;
Ferrante, Paola ;
Gramazio, Pietro ;
Mini, Paola ;
Fortis, Ezio ;
Scaglione, Davide ;
Toppino, Laura ;
Vilanova, Santiago ;
Jose Diez, Maria ;
Rotino, Giuseppe Leonardo ;
Lanteri, Sergio ;
Prohens, Jaime ;
Giuliano, Giovanni .
FRONTIERS IN PLANT SCIENCE, 2019, 10
[5]   Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.) [J].
Bassi, Filippo M. ;
Bentley, Alison R. ;
Charmet, Gilles ;
Ortiz, Rodomiro ;
Crossa, Jose .
PLANT SCIENCE, 2016, 242 :23-36
[6]   Small ad hoc versus large general training populations for genomewide selection in maize biparental crosses [J].
Brandariz, Sofia P. ;
Bernardo, Rex .
THEORETICAL AND APPLIED GENETICS, 2019, 132 (02) :347-353
[7]  
Breseghello F., 2009, International Rice Research Notes, V34, P1, DOI 10.3860/irrn.v34i0.1069
[8]   Genome-Wide Analysis of Tar Spot Complex Resistance in Maize Using Genotyping-by-Sequencing SNPs and Whole-Genome Prediction [J].
Cao, Shiliang ;
Loladze, Alexander ;
Yuan, Yibing ;
Wu, Yongsheng ;
Zhang, Ao ;
Chen, Jiafa ;
Huestis, Gordon ;
Cao, Jingsheng ;
Chaikam, Vijay ;
Olsen, Michael ;
Prasanna, Boddupalli M. ;
San Vicente, Felix ;
Zhang, Xuecai .
PLANT GENOME, 2017, 10 (02)
[9]   Empowering crop resilience to environmental multiple stress through the modulation of key response components [J].
Cappetta, E. ;
Andolfo, G. ;
Di Matteo, A. ;
Ercolano, M. R. .
JOURNAL OF PLANT PHYSIOLOGY, 2020, 246
[10]   Inheritance analysis and identification of SNP markers associated with ZYMV resistance in Cucurbita pepo [J].
Capuozzo, Claudio ;
Formisano, Gelsomina ;
Iovieno, Paolo ;
Andolfo, Giuseppe ;
Tomassoli, Laura ;
Barbella, Maria Mafalda ;
Pico, Belen ;
Paris, Harry S. ;
Ercolano, Maria Raffaella .
MOLECULAR BREEDING, 2017, 37 (08)