Quantum effects in the Aubry transition

被引:9
作者
Bonetti, Pietro Maria [1 ]
Rucci, Andrea [2 ,3 ]
Chiofalo, Maria Luisa [2 ,3 ]
Vuletic, Vladan [4 ,5 ]
机构
[1] Max Planck Inst Solid State Res, Heisenbergstr 1, D-70569 Stuttgart, Germany
[2] Univ Pisa, Dipartimento Fis Enrico Fermi, Largo B Pontecorvo 3, I-56127 Pisa, Italy
[3] Ist Nazl Fis Nucl, Largo B Pontecorvo 3, I-56127 Pisa, Italy
[4] MIT, Dept Phys, MIT Harvard Ctr Ultracold Atoms, Cambridge, MA 02139 USA
[5] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 01期
关键词
FRENKEL-KONTOROVA MODEL; PHASE-TRANSITION; FRICTION; SYSTEMS; CHAINS; ATOM;
D O I
10.1103/PhysRevResearch.3.013031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Aubry transition between sliding and pinned phases, driven by the competition between two incommensurate length scales, represents a paradigm that is applicable to a large variety of microscopically distinct systems. Despite previous theoretical studies, it remains an open question to what extent quantum effects modify the transition, or are experimentally observable. An experimental platform that can potentially reach the quantum regime has recently become available at MIT in the form of trapped laser-cooled ions subject to a periodic optical potential [A. Bylinskii, D. Gangloff, I. Counts, and V. Vuletic, Observation of Aubry-type transition in finite atom chains via friction, Nat. Mater. 15, 717 (2016)]. Using path-integral Monte Carlo (PIMC) simulation methods, we analyze the impact of quantum tunneling on the sliding-to-pinned transition in this system and determine the phase diagram in terms of incommensuration and potential strength. We propose new signatures of the quantum Aubry transition that are robust against thermal and finite-size effects and that can be observed in future experiments.
引用
收藏
页数:13
相关论文
共 56 条
[21]  
Efron B., 1982, bootstrap/jackknife analysis of the tree robustness
[22]   Nanofriction in Cavity Quantum Electrodynamics [J].
Fogarty, T. ;
Cormick, C. ;
Landa, H. ;
Stojanovic, Vladimir M. ;
Demler, E. ;
Morigi, Giovanna .
PHYSICAL REVIEW LETTERS, 2015, 115 (23)
[23]   ONE-DIMENSIONAL DISLOCATIONS .1. STATIC THEORY [J].
FRANK, FC ;
VANDERMERWE, JH .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1949, 198 (1053) :205-216
[24]  
Gangloff D, 2015, NAT PHYS, V11, P915, DOI [10.1038/NPHYS3459, 10.1038/nphys3459]
[25]   Kinks and nanofriction: Structural phases in few-atom chains [J].
Gangloff, Dorian A. ;
Bylinskii, Alexei ;
Vuletic, Vladan .
PHYSICAL REVIEW RESEARCH, 2020, 2 (01)
[26]   Frenkel-Kontorova model with cold trapped ions [J].
Garcia-Mata, I. ;
Zhirov, O. V. ;
Shepelyansky, D. L. .
EUROPEAN PHYSICAL JOURNAL D, 2007, 41 (02) :325-330
[27]   RELATIONSHIP BETWEEN SYSTEMS OF IMPENETRABLE BOSONS AND FERMIONS IN ONE DIMENSION [J].
GIRARDEAU, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1960, 1 (06) :516-523
[28]   THE DYNAMICS OF CHARGE-DENSITY WAVES [J].
GRUNER, G .
REVIEWS OF MODERN PHYSICS, 1988, 60 (04) :1129-1182
[29]   Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons [J].
Haller, Elmar ;
Hart, Russell ;
Mark, Manfred J. ;
Danzl, Johann G. ;
Reichsoellner, Lukas ;
Gustavsson, Mattias ;
Dalmonte, Marcello ;
Pupillo, Guido ;
Naegerl, Hanns-Christoph .
NATURE, 2010, 466 (7306) :597-U1
[30]  
HASTINGS WK, 1970, BIOMETRIKA, V57, P97, DOI 10.1093/biomet/57.1.97