Morita equivalence of factorizable semigroups

被引:8
作者
Laan, Valdis [1 ]
Reimaat, Ulo [1 ]
机构
[1] Univ Tartu, Fac Sci & Technol, Inst Math & Stat, J Liivi 2, EE-50409 Tartu, Estonia
关键词
Factorizable semigroup; firm semigroup; firm act; Morita equivalence; strong Morita equivalence;
D O I
10.1142/S0218196719500243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A semigroup is called factorizable if each of its elements can be written as a product. We study equivalences and adjunctions between various categories of acts over a fixed factorizable semigroup. We prove that two factorizable semigroups are Morita equivalent if and only if they are strongly Morita equivalent. We also show that Morita equivalence of finite factorizable semigroups is algorithmically decidable in finite time.
引用
收藏
页码:723 / 741
页数:19
相关论文
共 13 条
[1]  
[Anonymous], THESIS
[2]  
[Anonymous], 1976, Pure and Applied Mathematics
[3]   Morita equivalence for factorisable semigroups [J].
Chen, YQ ;
Shum, KP .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2001, 17 (03) :437-454
[4]  
GMKelly, 1980, Bulletin of the Australian Mathematical Society, V22, P1
[5]   Morita equivalence of semigroups revisited: Firm semigroups [J].
Laan, Valdis ;
Marki, Laszlo ;
Reimaa, Uelo .
JOURNAL OF ALGEBRA, 2018, 505 :247-270
[6]   Strong Morita equivalence of semigroups with local units [J].
Laan, Valdis ;
Laszlo Marki .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (10) :2538-2546
[7]   Context equivalence of semigroups [J].
Laan, Valdis .
PERIODICA MATHEMATICA HUNGARICA, 2010, 60 (01) :81-94
[8]   Morita equivalence of semigroups with local units [J].
Lawson, M. V. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (04) :455-470
[9]  
MACLANE S, 1978, CATEGORIES WORKING M
[10]  
Quillen D., 1996, Module theory for nonunital rings